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Abstract. Based on the works [11, 22, 27] a fuzzy time series model is proposed and
applied to predict chaotic financial process. The general methodological framework
of classical and fuzzy modelling of economic time series is considered. A complete
fuzzy time series modelling approach is proposed which includes: determining and
developing of fuzzy time series models, developing and calculating of fuzzy relations
among the observations, calculating and interpreting the outputs. To generate fuzzy
rules from data, the neural network with SCL-based product-space clustering is
used.
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1 INTRODUCTION

Much of the literature in the field of the fuzzy logic and technology is focused on
dynamic processes modelling with linguistic values as its observations (see e.g. [14,
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15, 22]). Such a dynamic process is called fuzzy time series. This type of dynamic
processes play very important role in making practical applications. Economic and
statistical time series analysis is concerned with estimation of relationships among
groups of variables, each of which is observed at a number of consecutive points
in time. The relationships among these variables may be complicated. In parti-
cular, the value of each variable may depend on the values taken by many others
in several previous time periods. Very often it is difficult to express exactly these
dependencies, or hypothesis known for that is not there. Very frequently, in such
cases more sophisticated approaches are considered. These approaches are based
on the human experience knowledge and consist of series of linguistic expressions
each of which takes the form of an “if . . . then . . . ” fuzzy rule; and they are well
known under the common name fuzzy controllers. But also, an expert is usually
unable to linguistically describe the behaviour of economic processes in particular
situations. Hence, most recent researches in the fuzzy controllers design for deriving
of linguistically interpreted fuzzy rules have been focused on developing automatic
methods to build these fuzzy rules using a set of numerical input-output data. To
apply these methods it is supposed that a database describing previous input-output
behaviour a system is available [14]. Most of these models and data-driven tech-
niques rely on the use of Takagi-Sugeno type controllers and fuzzy/non-fuzzy neural
networks [6, 8, 9, 10, 19, 24], clustering/fuzzy-clustering and genetic algorithm ap-
proaches [3, 4, 7, 11, 12, 23, 25].

The goal of this paper is to illustrate that two distinct areas, i.e. fuzzy sets the-
ory and computational networks, may be used for economic time series modelling.
This approach goes under the term “soft computing” as a synergy of methodologies
useful to solve problems using some form of intelligence that differ from traditional
computing. We show how to use and incorporate both fuzzy sets theory and compu-
tational networks to determine the fuzzy relational equations. As an application of
the proposed method, the estimate of the inflation is carried out in this paper. The
characterisation of time series is introduced in Section 2. Quantitative modelling
methods of time series are presented in Sections 3 and 4. They introduce conven-
tional and fuzzy time series modelling and show how to combine neural and fuzzy
systems to produce fuzzy rules. Concluding remarks are offered in Section 5.

2 CONVENTIONAL AND FUZZY TIME SERIES

To build a time series model, in a research a sample of observations from the
available data is usually collected. A time series consists of an observation set
{y1, y2, . . . , yt, . . .} of some phenomenon, taken at equally spaced time intervals. We
assume that yt is real for each t ∈ T, where T = {1, 2, . . . , T} is an index set. The
subscript t can now be referred to as time, so yt is the observed value of the time
series at time t. The total number of observations in a time series (here T ) is called
the length of the time series or length of the data.
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Time series models are based on the analysis of chronological sequence of ob-
servations on particular variable. The main purpose of time series analysis is to
understand the underlying mechanism that generates data, and, in turn, to esti-
mate observed data and apply the models for forecasting. In any case, time series
analysis rests on the assumption that one may forecast (estimate) the value of an
item by studying past movements of that item over time. Typically, in conventional
time series analysis, we assume that the generating mechanism is probabilistic and
that the observed series {y1, y2, . . . , yt, . . .} is a realisation of a stochastic process
{Y1, Y2, . . . , Yt, . . .}. This process is assumed to be stationary and is described by
a class of linear models called autoregressive moving average (ARMA) models. Box
and Jenkins [1] give a thorough treatment of these models. In the following, we will
typically refer to realisations of stochastic processes by the notation yt for a value
at t, and {yt} for a full set of values corresponding to the index set T = {1, 2, . . . , T}.
We will also restrict our attention to discrete stochastic process, for which the index
set is a discrete set, in which case we generally use the notation yt rather than y(t),
which may apply also to continuous processes.

Once an appropriate model fits, it can be used to generate forecasts for future
time periods. Most forecasting methods, commonly used in time series analysis,
generate forecasts of future observations that are optimal in a minimum mean,
square error sense (i.e. the best linear predictor).

Next, let ŶT (τ) denote the forecast τ steps ahead; we define as

ŶT (τ) = E(YT+τ |ψT ) (1)

the conditional expectation of YT+τ given ψT = {YT , YT−1, . . . Y1, . . .}, where E is
the expectations operator and ψT represents a particular information set. Here we
assume that we have data extending to the infinite past. Equation (1) can be used
recursively to obtain the forecast values of YT+τ for τ = 1, 2, . . . once we know the
right-hand side of (1).

In practice we have a finite number of observations, the above derivation; nev-
ertheless, on the best linear predictor in the infinite sample limit enables to develop
a way of calculating the approximate best linear predictor when T is large. Recall
that an invertible ARMA model can be written as Yt =

∑
∞

i=1
φiYt−i, where the φi

weights decrease exponentially, and for large T is a good approximation to truncate
the infinite sum, and truncating the infinite sum is the same as setting Yt = 0 for
t ≤ 0.

In contrast to the conventional time series, the observations of fuzzy time series
are fuzzy sets (the observations of conventional time series are real numbers), the
universes of discourse for the fuzzy sets are subsets of R1, where R

1 is the set of
real numbers, either naturally or artificially defined. Song and Chisson [22] give
a thorough treatment of these models. Let Xt, (t = . . . , 1, 2, . . .), a subset of R1,
be the universe of discourse where fuzzy sets yit, (i = 1, 2, . . .) are defined and Yt is
the collection of yit, (i = 1, 2, . . .). Then Yt, (t = . . . , 1, 2, . . .) is called a fuzzy time
series on Xt, (t = . . . , 1, 2, . . .).
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3 QUANTITATIVE TIME SERIES MODELLING METHODS

Quantitative modelling methods of both conventional and fuzzy time series can be
grouped into two types: time series methods and causal methods. As mentioned
above, univariate time series models are based on the analysis of chronological se-
quence of observations on a particular variable. Causal models assume that the
variable to be modelled can be explained by the behaviour of another variable, or
as a set of variables.

In practice, there are many time series in which successive observations are
dependent, i.e. there exists an observational relation

R = {(yt, yt−1), (yt−1, yt−2), . . .} ⊆ Yt × Yt−1, (2)

where Yt, Yt−1 denote the variables and yt, yt−1, . . . denote the observed values of Yt
and Yt−1 respectively. If there is a strict inclusion R ⊂ Yt × Yt−1, it is reasonable to
say that variables Yt and Yt−1 interact. In order to account for this interaction the
usual practice is to find some analytical expression that describes this interaction.

The most often used model is, however, an explicit function

f : Yt−1 → Yt. (3)

belonging to a prespecified class of mappings [5] (this means that we look for some
relation instead of function, or for a function f such that the conditions f(yt−1) = yt
for t = 1, 2, . . . , T are violated. Very often the linear function (Markov process)

yt = f(yt−1, φ1, εt) = φ1yt−1 + εt (4)

is used, where εt is a random error or noise component that is drawn from a sta-
ble probability distribution with zero mean and constant variance. Equation (4)
is usually called an autoregressive process of the order p = 1 abbreviated AR(1)
because the current observation yt is “regressed” on previous realisation yt−1 of the
same time series. Roughly speaking, to determine the model (4) means to find the
coefficient φ1 such that function (3) satisfies some optimality criterion in fitting the
observed data R.

The AR(1) process (4) is a special case of a stochastic process which is known as
the mixed autoregressive-moving average model of order (p, q) which is abbreviated
ARMA(p, q):

yt = φ1yt−1 + φ2yt−2 + . . .+ φpyt−p − θ1εt−1 − θ2εt−2 − . . .− θqεt−q + εt (5)

where {φ1, φ2, . . . , φp} and {θ1, θ2, . . . , θq} are called AR coefficients and MA coeffi-
cients, respectively. As mentioned above, it is important that each invertible ARMA
(p, q) process can be considered as an AR(∞) or as an approximate AR(p) model
of the form

yt = φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + εt. (6)
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If the time series of interest, say Yt, is related to one or more other time series, then
it is possible to build a model that uses the information content in these other time
series. These models are called transfer function models [17] and they are logical
extension of univariate ARMA models. A simple model relating the two time series
{Yt}, {Zt} is

Yt = ψ0Zt + ψ1Zt−1 + . . .+ ψkZt−k + et, (7)

where the ψ1, ψ2, . . . , ψk are unknown coefficients and et is a noise component pos-
sibly assumed to be normally and independently distributed with mean zero and
constant variance.

In the case of the fuzzy time series, the fuzzy relational equations can be em-
ployed as the models. Analogously to the conventional time series models, it is
assumed that the observation at the time t accumulates the information of the ob-
servation at the previous times, i.e. there exists a fuzzy relation such that

y
j
t = yit−1 ◦Rij(t, t− 1), (8)

where yjt ∈ Yt, y
i
t−1 ∈ Yt−1, i ∈ I , j ∈ J , I and J are indices sets for Yt and Yt−1

respectively, “◦” is the sign for the max-min composition, Rij(t, t − 1) is the fuzzy
relation among the observations at t and t − 1 times. Then Yt is said to be caused
by Yt−1 only, i.e.

yit−1 → y
j
t (9)

or equivalently

Yt → Yt−1 (10)

and

Yt = Yt−1 ◦R(t, t− 1), (11)

where R(t, t − 1) denotes the overall relation between Yt and Yt−1. In the fuzzy
relational equation (11) the overall relation R(t, t− 1) is calculated as the union of
fuzzy relations Rij(t, t − 1), i.e. R(t, t − 1) =

⋃
ij Rij(t, t − 1), where “

⋃
” is the

union operator. In the following, we will use Mamdani’s method [13] to determine
these relations. For simplicity, in the following discussion, we can also express yit−1

and yjt as the values of membership functions for fuzzy sets yit−1 and y
j
t respectively.

Since Equation (8) is equivalent to the linguistic conditional statement

“if yit−1 then yjt”, (12)

we have Rij(t, t− 1) = yit−1 × y
j
t , where “×” is the Cartesian product and therefore

R(t, t− 1) = max
i,j
{min(yit−1, y

j
t )}. (13)

Equation (11) is called a first-order model of the fuzzy time series Yt with lag
p = 1.
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The first-order fuzzy time series model (11) is an important special case of the
p-order model expressed by the following fuzzy relational equations

Yt = (Yt−1 × Yt−2 × . . .× Yt−p) ◦Ra(t, t− p) (14)

or
y
j
t = (yi1t−1 × y

i2
t−2 × . . .× y

ip
t−p) ◦R

p
a(t, t− p). (15)

Equation (14) is equivalent to statement

“if yi1t−1 and yi2t−2 and . . . and y
ip
t−p then yjt

′′ (16)

and we have
Rp

a(t, t− p) = min
j,i1...ip

{yjt , y
i1
t−1, y

i2
t−2, . . . , y

ip
t−p}, (17)

Ra(t, t− p) = max
p

{
min
j,i1...ip

{yjt , y
i1
t−1, y

i2
t−2, . . . , y

ip
t−p}

}
. (18)

We see from Equation (14) that Yt is caused by Yt−1, Yt−2, . . . , Yt−p simultaneously.
All of the univariate fuzzy time series models discussed above can be extended

to the causal (econometric) fuzzy time series models. For example, suppose that the
fuzzy time series Yt is related to a second fuzzy time series Zt−1 defined on universes
discourse Xt and Wt, respectively, (t = . . . , 0, 1, 2, . . .), where Xt and Wt ∈ R

1.
Suppose Zt−1 → Yt; then, analogously to the expressions (8), (9), (10), (11), we can
write

zkt−1 → y
j
t , (19)

Zt−1 → Yt, (20)

y
j
t = zkt−1 ◦Rzy(t, t− 1) (21)

or as the conditional statement “if zkt−1 then yjt”, where z
k
t−1 ∈ Zt−1, (k = 1, 2, . . .),

y
j
t ∈ Yt are fuzzy sets, k ∈ K, where K is the index set for Zt−1.

4 DETERMINATION OF FUZZY RELATIONS

BY NEURAL NETWORKS

All the above fuzzy time series models can be determined if in particular models
the fuzzy relations are known. Since finding the exact solution of fuzzy relations is
generally very difficult and unrealistic in practice, more sophisticated approaches are
considered very frequently. All these approaches are well known under the common
name “fuzzy controllers”. Now, we will illustrate how to obtain the fuzzy rules of
the type of (12) or (16). Basically there are three applicable methods for deriving
these rules [16]:

1. Methods based on human aperator’s experience,
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2. Methods based on a modelling of human operator’s controlling actions,

3. Methods based on a model of a process.

Since first two methods are frequently used in technical or technological systems,
we will apply the third method. As mentioned earlier, to apply the third method it
is supposed that a database describing previous input-output behaviour of a system
and the adequate model of the observed process are available.

In a fuzzy system, neural networks represent a powerful tool for generating fuzzy
rules purely from data. Neural networks can adaptively generate the fuzzy rules in
a fuzzy system by SCL-based product-space clustering technique [11]. Next, in
a numerical example, we will illustrate and show, how to obtain fuzzy rules using
the fuzzy sets theory and neural networks.

Let us consider a simple example. The data set used in this example (the 514
monthly inflations in the U.S. for the forty-three years 1956–1998) was published
at http://neatideas.com/data/inflatdata.htm. As many financial time series,
the original data exhibit considerable inequalities of the variance over time, and the
log transformation stabilises this behaviour. Figure 1 illustrates the time plot of
this time series. This time series shows no apparent trend or periodic structure. We
would like to develop a time series model for this process so that a predictor for the
process output can be developed. To build a forecast model the sample period for
analysis y1, . . . , y344 was defined, i.e. the period over which the forecasting model
can be developed and estimated, and the ex post forecast period (validation data
set), y345, . . . , y514 as the time period from the first observation after the end of the
sample period to the most recent observation. By using only the actual and forecast
values within the ex post forecasting period only, the accuracy of the model can be
calculated.

Fig. 1. Natural logarithm of monthly inflation from February 1956 to November 1998
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Input selection and data preprocessing are of crucial importance to the develop-
ment of time series models. Potential inputs (independent variables) were chosen
based on traditional statistical tools. These include the autocorrelation function
(ACF), the partial autocorrelation function (PACF) and the Akaike Information Cri-
terion (AIC) [26]. Following this, at the starting point we have formulated a model
relating the value yt of the series at time t that depends only on its previous value
yt−1 and on the random disturbance εt, i.e.

yt = ξ + φ1yt−1 + εt, (22)

where the variable yt (in our case the first inflation rate difference) is explaned by
its previous values only, and εt is a white noise disturbance term. Using Levinson-
Durbin algorithm [2, 18] the model (22) is statistically fitted as

ŷt = − 0, 1248yt−1. (23)

In input selection, all the above techniques based on the traditional statistical ana-
lysis are in fact imprecise (the theoretical ACF was estimated by the sample ACF,
etc.). In fact we obtain a certain number of input values, but we are sure that these
values are one of many other possible values. Thus, we will further suppose that
the potential inputs, which were chosen based on statistical analysis, are crisp data.
Sometimes it may be advantageous to convert them into fuzzy sets (linguistic values)
characterized by membership functions (the uncertainty is modelled as a possibility
distribution). At this stage, we will only give some outlines to model a fuzzy time
series in a fuzzy environment. The fuzzy time series modelling procedure consists
of an implementation of several steps, usually as follows:

1. Define the input-output variables and the universes of discourse.

2. Define (collect) linguistic values and fuzzy sets on the universes of discourse.

3. Define (find) fuzzy relations (fuzzy rules).

4. Apply the input to the model and compute the output.

5. Defuzzify the output of the model.

The proposed fuzzy time series modelling procedure is divided into five steps.
From Step 1 to Step 2, the input data are fuzzified, in Step 3, analogously to the
conventional model (22), the fuzzy time series model, i.e. the fuzzy relational model
is created. Steps 4, 5 are considered as an application of the model (i.e., analysis of
economic structures and the forecasting). In the literature this modelling approach
is known as the fuzzy rule based system (see Figure 2). Below we will discuss
these steps and apply them to the inflation time series at a more detailed level. In
Figure 2 the fuzzy rule based system has three blocks: (a) block for fuzzification of
input variables, (b) knowledge base block, and (c) defuzzification block.

Firstly, in the fuzzification block, we specified input and output variables. The
input variable xt−1 is the lagged first difference of inflation values {yt} and is calcu-
lated as xt−1 = yt−1− yt−2, t = 3, 4, . . .. The output variable xt is the first difference
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Fig. 2. Structure of the fuzzy system for inflation forecasts

of inflation values {yt} and it is calculated as xt = yt − yt−1, t = 2, 3, . . .. The
variable ranges are as follows:

−0, 75 ≤ xt, xt−1 ≤ 0, 75.

These ranges define the universe of discourse within which the data of xt−1 and xt
are, and on which the fuzzy sets have to be, specified. The universes of discourse
were divided into the seven intervals.

Next, we specified the fuzzy-set values of the input and output fuzzy variables.
The fuzzy sets numerically represented linguistic terms. Each fuzzy variable assumed
seven fuzzy-set values as follows: NL: Negative Large, NM: Negative Medium, NS:
Negative Small, Z: Zero, PS: Positive Small, PM: Positive Medium, PL: Positive
Large.

Fuzzy sets contain elements with degrees of membership. Fuzzy membership
functions can have different shapes. The triangular membership functions were
chosen. Figure 3 shows membership function graphs of the above fuzzy sets.

Fig. 3. Fuzzy membership functions of fuzzy variables xt−1 and xt

The input and output spaces were divided into the seven disjoint fuzzy sets.
From membership function graphs µt−1, µt Figure 3 shows that the seven inter-
vals [−0, 75;−0, 375], [−0, 375;−0, 225], [−0, 225;−0, 075], [−0, 075; 0, 075], [0, 075;
0, 225], [0, 225; 0, 375], [0, 375; 0, 75] correspond to NL, NM, NS, Z, PS, PM, PL,
respectively.
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Next, we specified the fuzzy rule base or the fuzzy relations bank. The appendix
describes the neural network which uses the supervised competitive learning to derive
fuzzy rules from data. As shown in Figure 4(b) the bank contains the 5 fuzzy rules.
For example, the fuzzy rule of the 34th block corresponds to the following fuzzy
relation

IF xit−1 = PM THEN x
j
t = PS. (24)

Finally, we determined the output action given the input conditions. The Mam-
dani’s implication [13] was used. Each fuzzy rule produces the output fuzzy set
clipped at the degree of membership determined by the input condition and the
fuzzy rule. When the input value, say xit−1 = xi344, is applied to the model (8), the

output value xjt = x
j
345 can be calculated. It is possible to compute the output fuzzy

value xjt by the following simple procedure consisting of three steps:

• Compute the membership function values µNL(xt−1), µNM(xt−1), . . . , µPL(xt−1)
for the input xt−1 using the membership functions shown in Figure 3.

• Substitute the computed membership function values in fuzzy relations (12),
(24).

• Apply the max-min composition to obtain the resulting value xjt of fuzzy rela-
tions.

Following the above principles, we have obtained the predicted fuzzy value for
the inflation xt = x

j
345 = 0, 74933.

The inflation values in the output xjt , t = 345, 346, . . . are not very appropriate
for a decision support because they are fuzzy sets. To obtain a simple numerical
value in the output universe of discourse, a conversion of the fuzzy output is needed.
This step is called defuzzification. The simplest defuzzification scheme seeks for
the value x̂t that is of middle membership in the output fuzzy set. Hence, this
defuzzification method is called the Middle of Maxima, abbreviatedMOM. Following
this method, we have obtained the predicted value for the x̂345 = −0, 15. The
remaining forecasts for ex post forecast period t = 346, 347, . . . may be generated in
a similar way.

As a final point, let us examine what has been gained by use of a fuzzy time
series model over an ordinary AR(1) model for the output x345. For this pur-
pose, we have computed prediction limits on the one-step-ahead forecast from the
AR(1) model, and fuzzy time series model. The 95 percent interval around the

actual inflation value based on the statistical theory is x̂345 ∓ u1−α

2
σ̂ε(1 + φ2

1)
1

2 =

0, 00312∓ 1, 96 0, 15476(1+ (− 0, 1248)2)
1

2 = (−0, 0442; 0, 05043), where x̂345 repre-
sents the forecast for period t = 345 made at origin t = 344, u1−α

2
is a 100(1− α

2
)

percentage of the standard normal distribution, and σ̂ε an estimate of the standard
deviation of the noise. An intuitive method for constructing confidence intervals
for fuzzy time series model is simply the defuzzification method First of Maxima
and First of Minima to obtain prediction limits on the one-step-ahead forecast. In
our example, the “confidence” interval for fuzzy time series value x̂345 = 0, 00312 is
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(−0, 30256 to 0, 3088). The actual value for the AR(1) model does not fall within
the forecast interval, and moreover, its sign is opposite to the forecast value sign.

5 CONCLUSION

In this paper, we have presented an application of the fuzzy time series model to
forecast an autoregressive process. A formal framework for the definition of fuzzy
rules has been given. This framework is based on the simple competitive learning
of networks. The neural network with the SCL clustering technique was used to
determine the fuzzy relation (fuzzy rules) of first-order fuzzy time series models
directly from data. The proposed method is also suitable for parameter estimations
of econometric models, in applications of deterministic non-linear dynamics and
chaos theory in contemporary economics and finance.

In comparison of proposed techniques with statistical approaches, the AR(1)
model generates worse one-step-ahead forecasts. Furthermore, pure statistical mod-
els will involve greater computational effort, and will be more difficult to modify.

Because the results were based of chosen inflation rates and data, they were
difficult to generalize in others situations. Yet, the results certainly provide a rational
way for improvement of forecasting abilities in chaotic economic systems.

The method may be of real usefulness in practical applications, where the expert
usually cannot explain linguistically what control actions the process takes or there is
no knowledge of the process. In principle a neural network can derive this knowledge
from data. In practice this is usually necessary. Although the method has been
carried out in the time series modelling field, it is suitable for other applications as
data mining systems, information access systems, etc.
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APPENDIX

GENERATING FUZZY RULES BY SCL-BASED

PRODUCT-SPACE CLUSTERING

The neural network shown in Figure 4 was used to generate structured knowledge
of the form “if A, then B” from a set of numerical input-output data. In Section 4
we defined cell edges with the non-overlapping seven intervals of the fuzzy-set values
in Figure 3. The interval −0, 75 ≤ xt, xt−1 ≤ 0, 75 was partitioned into seven non-
uniform subintervals that represented the seven fuzzy-set values NL, NM, NS, Z,
PS, PM, and PL assumed by fuzzy variables xt−1 and xt. The Cartesian product
of these subsets defines 7 × 7 = 49 fuzzy cells in the input-output product space
R

2. As mentioned in [10] these fuzzy cells equal fuzzy rules. Thus, there are total
49 possible rules and thus 49 possible fuzzy relations.

We can represent all possible fuzzy rules as 7-by-7 linguistic matrix (see Figu-
re 5). The idea is to categorise a given set or distribution of input vectors xt =
(xt−1, xt), t = 1, 2, . . . , 344 into 7 × 7 = 49 classes, and then represent any vector
just by the class into which it falls.

We used SCL (Supervised Competitive Learning) [10, 14] to train the neural
network in Figure 4. The software was developed at tha Institute of Computer
Science of the Faculty of Philosophy and Science, Opava. We used 49 synoptic
quantization vectors. For each random input sample xt = (xt−1, xt), the winning
vector wi = (w1i′ , w2i′) was updated by the SCL algorithm according to



470 D. Marček

w̃1i′ ← w̃1i + η(x̃1t − w̃1i)
w̃2i′ ← w̃2i + η(x̃2t − w̃2i)

}
if i = i′,

w̃1i′ ← w̃1i − η(x̃1t − w̃1i)
w̃2i′ ← w̃2i − η(x̃2t − w̃2i)

}
if i 6= i′,

where i′ is the winning unit defined ‖w̃i′ − x̃t‖ ≤ ‖w̃i − x̃t‖ for all i, and where w̃i

and x̃t are normalized versions of wi and xt, respectively, and η is the learning
coefficient.

Fig. 4. The topology of the network for fuzzy rules generating by SCL-based product-space
clustering

Fig. 5. Distribution of input-output data (xt−1, xt) in the input-output product space
Xt−1 ×Xt (a). Bank of fuzzy rules of the time series modelling system (b).
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Supervised Competitive learning (SCL)-based product-space clustering classi-
fied each of the 344 input-output data vectors into 9 of the 49 cells as shown in
Figure 5 (a). Figure 5 (b) shows the fuzzy rule bank. We added a rule to the rule
bank if the count of input-output vectors in particular cells was larger than the
value 0,05N , where N = 344 is number of data pairs (xt−1, xt), t = 1, 2, . . . , N in
the input and output series. For example, the most frequent rule represents the
cell 34. From most to least important (frequent) the fuzzy rules are (PM; PS), (PS;
PL), (NL; NS), (PS; PL), and (PS; PS).


