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Abstract. It is considered a difficult task to design a controller from scratch for
a robot in a dynamic environment. Evolutionary and genetic algorithms are fre-
quently used to find a solution with desired properties. The evolution is supposed
to run on one robot or agent processor. In this article we explore the possibility
of dividing the genome among several robots. Robots exchange among each other
successful controllers in the form of chromosomes that code for the weight vector in
a neural controller. Thus; the evolution can be faster because it runs in a parallel
manner over the whole robotic society, not in one robot. Second interesting point
is the exchange of experience among robots. Robots can send each other parts of

the controllers that they evolved on their own. They can learn behavioral strategies
that other robots developed. We describe experiments done with small Khepera
robots in the domain of a benchmark test for evolutionary robotics. We compare
the behavior generated by one robot based on its individual evolution with the robot
that profits from sharing the full set of chromosomes with the other robot.
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1 INTRODUCTION

It is not easy to find an optimal code for robot controllers from scratch. One of
the most successful methods of programming robots is to design a mechanism which
will evolve a controller that ensures a desired behavior. Evolutionary and genetic
algorithms are suitable tools to achieve this [5, 4].

There are mainly two ways of evolutionary design for robots. Either the robot
itself runs a genetic algorithm to produce a controller with desired behavioral pro-
perties (e.g. [3])1, or the evolution is constrained by the robot-to-robot couplings
in a multiagent scenario. This way it is possible to co-evolve different behavioral
strategies concurrently by direct interactions among robots. The experiments with
predator-prey co-evolution are well known(e.g. [11, 10]), and more attention is gained
by cooperative scenarios in multiagent systems (see [12] for last achievements).

Another possibility is offered by the multi-robot solution where the evolution of
controllers runs on the whole society of robots so that the genome is not constrained
to one agent body. Here we have two basic design possibilities. Either the popula-
tion of chromosomes is scattered over the multi-robot system and there is a central
process that evaluates their performance. In this case each of the robots represents
an autonomous process that tests only the part of the whole genome. In this case
there is a need for coordination of evolutionary processes (ordering of chromosomes,
crossover, mutation, etc.) and the central process has to allocate offspring chromo-
somes to robots. On the other hand there is no need of inter-robot communication.
The process that runs all the evolutionary computing plays a central part and if it
fails the whole system stops functioning immediately. Also, there is no possibility
of sharing experience among robots.

The other solution is to create random sets of chromosomes on every robot and
exchange successful population members among them. In this case we can go along
without a central process but the robots have to communicate with each other and
coordinate the exchange of chromosomes. This approach was taken by the authors
in [13] or [14].

In our work we focus on the latter solution. We gain time savings due to a pa-
rallelism in controller evolution and robustness due to a lack of central process
controlling robots. As a tradeoff there is a programming code and communication
overhead present in this solution. As a testbed of our ideas, we have chosen collision
avoidance representing almost benchmark behavior in experimental robotics. The
experiments described in this work should be used as a starting point in the design
of distributed genetic algorithm. Our aim was to design a simple solution that
could be extended to other platforms. We focus on general applicability as well as
depict more application-specific details. We also propose other improvements to our
solution and extension to our work.

1 A good overview of evolutionary robotics focusing on single robot scenarios represents
the work [9].
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The rest of the paper is organized as follows. In the following section we recall
basic properties of genetic algorithms and distributed genetic algorithms and give
information on relevant related work to our experiments. Section 3 contains basic
information on robots and experimental settings we used in our work. In the next
section (4) we present the experiment results. In Section 5 we discuss the result
and problems that we encountered and propose extensions to our work. Section 6
summarizes and concludes.

2 GENETIC ALGORITHMS

Genetic algorithm is one of the most used search and optimization algorithm and
in the last decade it is heavily used as an evolutionary learning method in applica-
tions of multiagent systems, artificial life, and robotics. On the theory of genetic
algorithms and why they work see [5], or [4].

2.1 Basic Idea

The basic idea of a genetic algorithm is as follows. Suppose that we can represent
potential solutions to a specified problem by strings of symbols organized in a po-
pulation. Motivated by Darwinian evolution of species that try to survive under
the pressure of environmental conditions, populations of strings evolve to form fitter
generations under the constraints of a problem task. Strings of solutions can be
thought of as genes (or genes carried by chromosomes)2 that code some behavior
representing a phenotype. Under evolutionary pressure only the fittest solutions sur-
vive and by means of reproduction and mutation give rise to solutions in subsequent
generations. The process can repeat until good enough or even optimal solution is
reached.

More precisely population P is a set of chromosomes denoted by

P = {g1, g2, . . . , gp} ∈ {a, b, . . .}
k.

Chromosomes {g1, g2, . . . , gp} are strings of length k composed of symbols from the
set {a, b, . . .}.3 Selection pressure is represented by a fitness function that maps
members of populations to positive real numbers:

f : P → R+.

The population evolution is a change of populations in a discrete fashion dependent
on time t as a consequence of a reproduction operator R:

2 In the sequel we will denote by chromosome a set of genes represented by strings.
3 Traditionally chromosomes holding one gene are represented as binary strings, i.e.

P ∈ {0, 1}k. In our work chromosomes ci are pairs of genes ci = {gi1 , gi2}, i ∈ {1, . . . , 40},
where each gene is a string of natural numbers g1,2 = {n}8, n ∈ N, n ∈ (−30, 30).
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Pt+1 = R(Pt).

In evolution of generations, the key processes are selection of a subset of a population
into an intermediary generation, crossover and mutation of its members leading to
a new generation.

2.2 The Algorithm

The genetic algorithm can be described by following pseudocode:

function Pfin ← geneticAlgorithm(tmax, stopCriterion)
begin

t := 0;
Pt ← initializePToRandomValues();

evaluate(Pt);

while ((t < tmax) and (not stopCriterion)) do
begin

t := t+ 1; Pinterm := ∅;
Pinterm ← select(Pt−1);

Pt ← reproduce(Pinterm);

Pt ← mutate(Pt);

end
Pfin := Pt;

end

2.3 Selection

Fitness function serves as a means to evaluate the performance of individual solu-
tions. Evaluated chromosomes are selected to intermediary generation on a stochas-
tic basis. There are several algorithms of selection used in the genetic algorithm.

Roulette wheel is a method of selection where the probability of survival for each
solution is proportional to its fitness.

Elitism prefers only the portion of the best solutions ranked by their fitness.
Tournament selection is a method in which pairs of randomly selected chromo-

somes meet and the one with higher fitness will pass to an intermediary generation.

2.4 Recombination Operators

Members of an intermediary population are subject to recombination operators.
This is due to three main reasons:

• in order to keep size of the next generation stable,

• to propagate features of successful individuals, and
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• to keep diversity of solutions by introducing new features into the population.

Reproduction and mutation are standard recombination operators.
Reproduction of chromosomes proceeds in the following way. As chromosomes

are selected they can directly pass to the next generation based on the given probabi-
lity, or they can be crossovered with another selected chromosome.

Crossover with ncp number of crossover points is an operator Oncp
cross that maps

a pair of chromosomes into a new pair of (offspring) chromosomes that hold part of
the features (symbols) from their parents:

(goffsp1 , goffsp2 ) = Oncp
cross(gi, gj), i, j ∈ {1, . . . , p}.

The point where crossover takes place is determined randomly and there can even
be more than one crossover points. The application and the result of one-point-
crossover can be seen in the following schema:

a1 . . . ai | ai+1 . . . an
O1

cross−→
b1 . . . bi | bi+1 . . . bn

a1 . . . ai bi+1 . . . bn

b1 . . . bi ai+1 . . . an.

Selected or reproduced chromosomes can have their symbols mutated with the given
probability. Mutation with nmp denoting number of mutated symbols4 is a recombi-
nation operator Onms

mut which changes one or more symbols in the chromosome string
randomly:

(gmut) = Onms
mut (g

offsp).

An example of a 1-bit mutation of a chromosome represented by a 8-bit binary string
can look like this:

10101010
O1

mut−→ 10111010.

2.5 Parallel Genetic Algorithm

Parallel genetic algorithm is an extension to traditional sequential genetic algo-
rithm in that the population of chromosomes is partitioned to independent disjoint
subpopulations. These evolve independently and exchange parts of their genome
on a stochastic basis. What follows is a pseudocode of a decentralized version of
a parallel genetic algorithm with no central process controlling the selection, repro-
duction and mutation of chromosomes in subpopulations.

function
gopt ← parallelGeneticAlgorithm(tmax, stopCriterion, pexchange)
begin

4 In our work we mutate natural numbers n ∈ (−30, 30) in the string representing
weight vector of a neural network connection.
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t := 0;
for i := 1 to N do

Pit ← initializePToRandomValues();

while ((t < tmax) and (not stopCriterion)) do
begin

t := t+ 1;
for i := 1 to N do

Pit ← oneGenerationGeneticAlgorithm();

if (rand > pexchange) then
begin

Pxt ← chooseRandomly(Pt);

Pyt ← chooseRandomly(Pt− {Pxt});
exchange(Pxt, Pyt);

end
end

gopt ← bestChromosome(Pt);

end

In the pseudocode of a decentralized parallel genetic algorithm the set of chro-
mosomes is divided to N independent subpopulations. In each step (until the stop
criterion is fulfilled or time expired) classical sequential algorithm with only one
population transition is then run on each of these subpopulations. Then two sub-
populations are selected stochastically and their chromosomes are exchanged. This
can be done in different ways. In our work one of the subpopulations sends 1/4 of
its best chromosomes to the other one.

Parallel genetic algorithm can be modified in several ways. It can be controlled
by central process that evaluates the subpopulations and distributes successful chro-
mosomes, it can define a neighborhood so that only neighboring subpopulations can
exchange chromosomes, the return value can be only one chromosome with the high-
est fitness or the whole subpopulation of best-valued chromosomes, etc. An overview
of parallel genetic algorithms can be found in [2].

3 ROBOTS

For the experiments we used two Khepera robots ([8]) that are well suited for edu-
cational as well as experimental purposes (see [6]). Basic module consists of two
interconnected boards with the diameter of 5.5 cm. It has two servomotors driving
independently two wheels and eight infrared sensors (six in the front and two at the
rear side of the robot – see Figure 1) that serve to avoid obstacles. Robots can move
at the speed of 1ms−1.

Robot is an autonomous unit in that the whole program written in C language
runs on the on-board processor. It is possible that the program runs on the host
computer and communicates with the robot via the serial communication line. We
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Fig. 1. Schematic view of a Khepera robot with two wheels and eight IR proximity sensors.
The arrow indicates the front movement of the robot

maintained such type of a communication only for the purposes of collecting data
from the experiments. Communication routines as well as program execution are
managed by Motorola 68331 controller with 256KB RAM and 512KB ROM.

We used an additional component – a radio extension turret that is mounted on
top of a robot in a plug and play fashion. It enables the communication of a robot
with the host computer via a radio base, but in our experiments we use it for direct
peer-to-peer communication between robots. Robots communicate via sending and
reading data buffers whose size is 16 bytes. Messages are sent directly to a robot
with a specified identification number. There is a built-in mechanism of checking
the correctness of messages. The sender considers a message to be sent correctly
only if it receives the acknowledgement from the receiver. It repeats the sending
process after the timeout when it receives no acknowledgement. The message is
considered lost after 10 unsuccessful trials. The robot with the radio extension used
in the experiments can be seen in the Figure 2.

Fig. 2. A front-side view of a Khepera robot with the radio turret ontop
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4 THE TASK

We tried to program our robots to learn to avoid dynamic or static obstacles. The
behavior is coded by a very simple neural network. It controls the movements of
a robot in a straightforward fashion. If the sensors of either side (left or right) of
a robot perceive any kind of obstacle, the motor on this side will speed up the wheel
it drives. The algorithm is inspired by abstract vehicles proposed in [1]. Genetic
algorithm is used to evolve weight vector of input-output neuron connections. These
are coded as chromosomes (so they are non-binary integer-valued codons). Each
robot evolves its own controllers. One of them sends (we will call it a sender)
the successful candidates to the second robot (denoted as receiver). The receiver
combines its own evolved population of chromosomes with those received from the
sender. We expect that it will learn better and faster than the sender. We try to
compare its expected performance with the observed behavior.

4.1 Roles

Programming code of both agents differ in several ways. In this section we describe
the algorithms of both robots in more detail.

4.1.1 The Sender

The body of program of the sender is composed of two main processes that are run-
ning interchangeably. One is responsible for running evolution of weight vectors and
testing the resulting neural controllers. The second one is responsible for sending
1/4 of the most successful population chromosomes to the receiver. Concise pseu-
docodes of sender’s processes are as follows:

process 1:
begin

t := 0;
wt[] ← createWeightVectorsWithRandomValues();

while (t < 20) do
begin

for i := 1 to N do
begin

runNeuralController(wit);

fit ← fitness(wit);

changeSpeedRandomly(s1, s2);
end

sort(wt);

buffer[] ← transformBestChromosomesToMessages(wt);

suspend(this);
while (not signalReceived) do
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waitForSignal(process2);
if (signalReceived) then

begin
t := t+ 1; winterm := ∅;
winterm ← select(wt−1);

wt ← reproduce(winterm);

wt ← mutate(wt);

end
end

end

process 2:
begin

while (true) do
begin

while (not signalReceived) do
waitForSignal(process1);

if (signalReceived) then
sendMessages(buffer, receiver);

sendSignal(process1);
end

end

The array of message buffers represents a global structure shared by both processes.
After each generation the first process transforms the best valued weight vectors into
an array of buffers 16 bytes each and gives control to the second process waiting
for response in the background. After the process 2 sends all of the array buffers to
an awaiting robot it sends a signal to the first process from which it awaits another
signal. Processes of a sender don’t run in a parallel manner because of problems
with interference between the radio transmission and communication with the host
computer that these processes maintain.

4.1.2 The Receiver

The receiver consists of two main processes that can be described by the following
pseudocodes:

process 1:
begin

t := 0;
wt[] ← createWeightVectorsWithRandomValues();

while (t < 20) do
begin

for i := 1 to N do
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begin
runNeuralController(wit);

fit ← fitness(wit);

changeSpeedRandomly(s1, s2);
end

sort(wt);

replace(wt1:N/4
, messages);

t := t+ 1; winterm := ∅;
winterm ← select(wt−1);

wt ← reproduce(winterm);

wt ← mutate(wt);

end
end

process 2:
begin

oldMessages ← createNullBuffer();

while (true) do
begin

receive(buffer, sender);
if (not (equals(buffer, oldMessages)) then

begin
messages ← transformMessagesToWeightVectors(buffer);
oldMessages := messages;

end
end

end

The receiver must continually check for new messages from the sender. The buffers
are not flushed which means that if no new message arrives the received buffer still
holds old values. That is why the robot must remember the previously arrived
message which it always compares with newly received information. If new array
of weight vectors arrives, the receiver rewrites the received weight vectors and uses
them in its own genetic algorithm as a second quarter of a population that will be
crossed over with the best members of its own genome. Processes of the receiver
run concurrently and there is no need of synchronization.

4.2 Neural Controller

The behavior of collision avoidance is performed by a neural controller with primitive
architecture.5 There are 8 input neurons fully connected with two output neurons

5 It was a purposes to design an artificial neural network that can solve the task as
simple as possible.
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that compute the speed of two motors. These connections are labelled by integer-
valued weights. Each of the input neurons has the information about the read value
of one of the proximity sensors. Schematic view of a neural network architecture
used in our experiments is in Figure 3.

0 31 2 4 5 6 7

output
neurons

input
neurons

proximity
sensors

speed0 speed1

weights

Fig. 3. Architecture of a neural network used in the experiment

The speed of each motor is computed according to eq. (1),

speedi = potentiali/400 + 10; i = {0, 1}, (1)

where

potentiali =
7

∑

j=0

(weightij ∗ irvaluej), (2)

where weightij, i = {0, 1}, j = {0, 1, . . .7} is a vector of weights represented as
a two-dimensional array of integer values from the open interval (−30, 30), and
irvaluej, j = {0, 1, . . .7} is a vector of values read by proximity sensors. Speed
of motors must be normalized and set to some non-negative value if the value of
potentiali is close to 0.

4.3 Evolutionary Settings

The genetic algorithm depicted in the robot processes above was used to evolve
the weight vector weightij, i = {0, 1}, j = {0, 1, . . .7}. In each run we evaluated
the population of neural controllers with the fitness function consisting of three
components from [3] (see eq. (3)).

Φ = V (1−
√

|speed0 − speed1|)(1− i), (3)

where V is a normalized average speed of two wheels, |speed0−speed1| is an absolute
difference of speed of two wheels, and i is a sensory value recorded by a proximity
sensor with highest activation normalized so that it doesn’t surpass the value 1.
These three components of a fitness function measure average speed of a robot (it
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should be maximized), speed difference of rotating wheels (it should be minimized),
and highest activation of proximity sensors (it should be minimized).

From each population we picked 1/2 of chromosomes with highest fitness values
and placed it in the next generation. Then we sequentially took pairs of parental
chromosomes and performed the crossover at the random spot to produce offspring
chromosomes for a new generation. Consequently we randomly changed a chromo-
some coding with 5% probability.

In case of the receiver robot we combined 1/4 of its own chromosomes with the
best 1/4 of the sender’s best population members to produce the offspring generation
as explained in Section 3.1 (see also schema in Figure 4).

crossover,
mutate ...

-20 10 -3 23 5 11 13 - 6 ...
11 0 -5 -12 12 9 -1 -3 10 ...
9 5 23 -2 -23 0 11 18  ...
21 20 -2 5 -9 12 3 9 0 ...
12 10 -5 22 11 7 0 -4 -5 ...
......

-2 11 -5 20 5 -11 12 - 1 ...
8 10 -15 2 1 19 -1 7 -1 ...
19 -5 2 -12 23 6 11 -14  ...
17 21 -12 3 9 2 -3 19 10 ...
1 -11 4 27 10 -7 0 14 15 ...
......

sender

-20 10 -3 23 5 11 13 - 6 ...
11 0 -5 -12 12 9 -1 -3 10 ...
9 5 23 -2 -23 0 11 18  ...
21 20 -2 5 -9 12 3 9 0 ...
12 10 -5 22 11 7 0 -4 -5 ...
-2 11 -5 20 5 -11 12 - 1 ...
8 10 -15 2 1 19 -1 7 -1 ...
19 -5 2 -12 23 6 11 -14  ...
17 21 -12 3 9 2 -3 19 10 ...
1 -11 4 27 10 -7 0 14 15 ...
...

receiver

receiver

pick

send

test and evaluate

pick, crossover,
mutate ...

test and evaluate

Fig. 4. Schema of a genetic algorithm for both robots

We experimented with various size of population – 12, 20, and 40 chromosomes.
We set the smallest size of population so that it almost always finds “acceptable”
solution for at least one of the robots – a controller that performs well judged not
by the fitness value but by looking at the moving robot performance. We were
mainly interested in the best controller, not the average performance that can be
determined only computationally. It is very interesting how small population of
neural controllers can evolve to a successful solution.

5 RESULTS

In this section we present results of our experiments. We describe experiments with
the populations of size 12, 20, resp. 40 chromosomes. Each experiment consists of
5 independent runs that were evaluated for the highest and average values as well
as for variance of both robots performance. Each run consisted of 20 generations
of evolving neural controllers. The goal of our experiments was to compare the
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performance of a sender and a receiver evaluating the controller fitness as well as
smoothness of their movements just by observing robots in the arena. Both robots
should learn to avoid obstacles satisfactorily and as fast as possible. The bigger
the population, the better the performance with more time spent on learning. Our
expectations are that the receiver will learn faster than the sender. Comparison to
results reported in [3] is difficult because fitness values are normalized and the input
of the neural network can have different values. So the only comparable result is
time spent by robots to learn the task “well enough”, which can be evaluated only
by observing their behavior.

Both robots move separately in a small closed arena with randomly dispersed
obstacles whose positions were changed during the experiments.

5.1 Experiment 1

In the first experiment we used 12 chromosomes in one population. The performance
of the best controller of the receiver is much better and it also learns faster in
comparison with the sender robot (see the Figure 5)6. Its performance is even better
on average, though not so markedly than the performance of best controllers. Due
to a small population size the learning peaks in the 14th generation. To measure how
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Fig. 5. Experiment with the population of 12 chromosomes. Max. and avg. fitness values
for both robots

sharing the chromosome pool improved the performance of a receiver we compared
in each generation the best evolved controllers of the sender and the receiver.

growthmax =
max(fitnessmax(gen

i
sender)− fitnessmax(gen

i
receiver)) ∗ 100

fitnessmax(geni
receiver)

(4)

6 Capital S and R in subsequent figures denote the sender and receiver, respectively.
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where

• real ← fitnessmax(gen
i
sender/receiver) is a function that returns the highest fit-

ness value from its argument – the set of fitness values of a given robot from
experimental run i ∈ {1, 2, 3, 4, 5}, and

• real← max(arg) is a function that returns the maximum difference of compared
highest fitness values of both robots throughout the all experimental runs.

growthmin =
min(fitnessmax(gen

i
sender)− fitnessmax(gen

i
receiver)) ∗ 100

fitnessmax(geni
receiver)

(5)

where real ← min(arg) is a function that returns the minimum difference of com-
pared highest fitness values of both robots throughout the all experimental runs.

growthreal =
(fitnessmax(gen

1−5

sender)− fitnessmax(gen
1−5
receiver)) ∗ 100

fitnessmax(gen
1−5
receiver)

(6)

where real ← fitnessmax(gen
1−5

sender/receiver) is a function that returns the highest
fitness value from its argument - the set of fitness values of a given robot throughout
the experimental runs 1–5.

The difference (that could be called maximum expected fitness growth) measured
in percentage shows how big the improvement could be in case of best-performing re-
ceiver’s controllers (eq. (4)). Figure 6 shows also the lowest expected fitness growth7

(eq. (5)) along with the real improvement (eq. (6)). Real growth in fitness of the
receiver’s chromosomes is higher than we would expect in this experiment.

5.2 Experiment 2

In this experiment the population of controllers consisted of 20 members. Again the
performance of the receiver was better in highest fitness values but approximately
the same on average (see Figure 7). In this experiment the receiver learned even
faster than in previous case (the highest fitness value in the 5th generation) but from
this point the learning started slowly to degrade.

The expected versus real growth in fitness of receiver’s best controllers can be
seen in Figure 8.

The learning of a receiver is much more unstable with big differences between
the highest and the smallest fitness values in each generation illustrated in Figure 9
and denoted by eq. (7).

varmin = min(fitnessmax(gen
i
sender/receiver)− fitnessmin(gen

i
sender/receiver)) (7)

7 This denotes to what degree the received controllers could negatively influence the
performance of a receiver.
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Fig. 6. Experiment with the population of 12 chromosomes. Expected vs. real fitness
growth in receiver’s chromosomes
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Fig. 7. Experiment with the population of 20 chromosomes. Max. and avg. fitness values

for both robots

where

• real ← fitnessmax(gen
i
sender/receiver) returns maximum fitness value of either

a sender or a receiver in one of the experimental run i ∈ {1, 2, 3, 4, 5},

• real ← fitnessmin(gen
i
sender/receiver) returns minimum fitness value of either

a sender or a receiver in one of the experimental run i ∈ {1, 2, 3, 4, 5}, and

• real← min(arg) is a function that returns the minimum difference of the highest
and the lowest fitness values of a sender or a receiver robot throughout the all
experimental runs.

There are mainly three reasons to this fact:
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Fig. 9. Experiment with the population of 20 chromosomes. Max. − min. fitness values
taken from the run with the smallest difference

• Controllers acquired from the sender with worse performance in comparison with
the receiver’s own population pool can perturb learning and destabilize it. Even
if it should not influence the best chromosomes it has an influence on creating
suboptimal solutions.

• Communication errors. The communication among Khepera robots is not very
reliable. There appears loss of data during the transmission which we roughly
estimate to be 5 to 15%. If the robot fails to correctly determine when new
array of message buffers arrives it uses old values instead which deteriorates the
performance of a given generation. The bigger the population of chromosomes,
the more fatal the consequences appear to be. Firstly, the robots must exchange
a number of messages that equals to half of the number of chromosomes in the
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population.8 The more messages they send and receive, the more probable is
the occurrence of transmission errors.

• Time delay in sending and testing chromosomes. Because of non-concurrent
nature of sender’s processes it takes more time for the sender to run all the
generations when compared to the receiver because the sender stops the genetic
algorithm while sending data to the other robot. That is why transmission lags
can occur in that the sender can send the receiver chromosomes from generations
that are older than the currently executed generations of the receiver. The
learning of the receiver can suffer from this.

The consequences of the facts explained above will be more visible in the last ex-
periment.

5.3 Experiment 3

Even if both robots achieved highest fitness values in this experiment (with 40 chro-
mosomes in population), the receiver robot didn’t perform better than the sender.
Its best controllers were better when compared to the best-performing sender’s con-
trollers only in a couple of generations and it completely failed when we take average
performance into account (see the Figure 10).

Figure 11 shows instability of the receiver’s evolving populations that is on
average higher than in the previous experiment.

In the last experiment the improvement in receiver’s fitness got hardly positive
values as depicted in Figure 12.

6 DISCUSSION

In this section we discuss our approach to controller evolution in the multi-robot
societies. We summarize the results of our experiments and compare them to other
reported works, we consider advantages and disadvantages of our solution, its po-
tential for future work and how some technical difficulties could be addressed.

6.1 Summary of Experiments

Our experiments have shown that evolution of neurocontrollers in a multirobot so-
ciety can be very fast even in a very small group of robots. In a couple of generations

8 Radio turrets of used Khepera robots use protocol that enables to transfer only
16 bytes messages (more precisely unsigned bytes), i.e. only small positive integers. One

weight vector that contains 16 weights must therefore be split into 2 messages. Each mes-
sage holds 1/2 of the weight vector values plus the indication of a sign of particular weight
value. E.g. message containing data {. . . 1 7 1 3 0 19 0 21 0 19 0 2 1 16 1 15} is a half of
a chromosome with values {7 3 -19 -21 -19 -2 16 15}.
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Fig. 10. Experiment with the population of 40 chromosomes. Max. and avg. fitness values
for both robots
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Fig. 11. Experiment with the population of 40 chromosomes. Max. − min. fitness values
taken from the run with the smallest difference

(5–20) the good enough controller can evolve even in a population of several con-
trollers (10–20). The learning can take 2 to many hours based on the evolutionary
settings. Authors in [3] report on near optimal performance with 50 generations
that was achieved in more than 30 hours. This is, nevertheless, influenced by the
population size. Very promising results were confirmed by real growth in fitness of
a robot that uses distributed chromosome pool that was even higher in some cases
than we expected.
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Fig. 12. Experiment with the population of 40 chromosomes. Expected vs. real fitness
growth in receiver’s chromosomes

Good results of a distributed genetic algorithm in comparison with serial genetic
algorithm were obtained only in small populations of chromosomes. Problems with
real environment and communication cause degradation of best as well as average
performance of controllers. This can be seen also on bigger variance in fitness va-
lues of receiver’s chromosomes. The possibility of population distribution to small
independent groups in our solution nevertheless eliminates consequences of this fact.

6.2 Generality of Our Approach

Our aim was to extend the evolution of a single agent neural controller to a group
of robots. We have shown that the learning by evolving robot controllers speeds
up if robots share the experience with their own evolution. An advantage of our
approach also consists in simplicity of implementation. We depicted the possibility
to create a pool of solutions that could be shared by a group of robots. The idea
rests in the fact that only controllers that were most successful are used in next
generations. The exchange of experience is thus possible in a very direct fashion.
This is applicable more generally in other tasks and controller architectures. The
only condition is an existence of a part of controller identified as an evolvable and
communicable unit in a genetic algorithm.

We implemented a parallel distributed algorithm with decentralized control and
direct communication described in Section 2.5 that is to our knowledge unique on
hardware platform. There are, nevertheless, various extensions and modifications
that can be done in the future and that we describe in more detail in the next
section.
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6.3 Extensions and Future Work

In case of a bigger group of robots they should communicate using some protocol.
The reason is possible loss of data due to repeated and failed transmission. Commu-
nicating robots must synchronize the process of sending and/or receiving. This is
necessary when more than one robot want to send messages to one robot at the same
time. The synchronization brings complexity and programming code overhead into
the implementation of multi-robot evolution of controllers in decentralized environ-
ment. The advantage of using synchronization protocols is generality – more robots
can evolve simultaneously which also (as we expect) brings the profit of massive
parallelism of evolution. This can be done effectively exchanging very small groups
of chromosomes (possibly containing only one chromosome) among robots. The
learning could be very fast and optimally performing controllers could be achieved
in several generations. In this case very high instability in the fitness values of
chromosomes has to be expected, because we have no guarantee of receiving only
better performing controllers. The possible solution could be to filter out received
chromosomes that have lower fitness value than the chromosomes evolved by the
receiving robot. This would require exchange of fitness values along with the weight
vectors.9

To eliminate data transmission errors it would be useful to design a mechanism
for continuous repetition of sending data if they have been lost from the part of the
sender. More difficult for the receiver would be to “guess” where is the beginning of
a new message array in case some of the messages get lost and the sender repeats
the transmission of a whole array again (because in this case the receiver uses the
contents of an old buffer, so it doesn’t notice that something went wrong).

Decentralized form of a distributed genetic algorithm is useful if the communica-
tion load can be reduced by limiting the number of communication partners of each
robot in each evolutionary run. Using direct communication is not very effective
from the point of view of exchanged data if more than 2 robots evolve simultane-
ously and if after each population every robot exchanges chromosomes with each
other in the group because each robot has to send the same set of data more than
once. A better way to do this would be to use stigmergic communication – com-
munication through the environment. The robots would drop the chromosomes to
a destined file from which they could be read by other robots. This file could be used
as a shared environment of robots. As a tradeoff we lose a power of decentralization
which can have bad impact on the behavior of a robot society in case the file will
go corrupt.

As for usefulness of our approach for cognitive science and robotics, it can be
applied in the research of cognitivistic approach to behavior of artificial creatures
and personalized agents. Robots share the environment but the experience with the
given task differs from agent to agent. Their behavior is a direct consequence of what

9 This cannot be done with Khepera robots because as mentioned in the previous section
they can directly exchange only bytes of unsigned integers.
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they learned online and the encoded artificial neural network or its parameters can
be considered a symbolic representation of the experience as the robot interacts with
the environment and other robots. This experience is grounded, i.e. it is not hand-
coded by a constructor from the beginning. By direct exchange of chromosomes,
robots share experience in a very elegant and straightforward fashion. Evolutionary
algorithms (especially used along with connectionism) thus can be used in the study
of personalized and individual approach to solving tasks by animats and the research
of “computational consciousness” of artificial minds. Features of the environment
as well as parameters of the solving task are extracted by the robot itself creating
its personal image (a virtual reality) of experience. Being only a basic idea reported
in this preliminary work we nevertheless hope it to serve as an influential source for
scientists coping with the problem of cognition as well as with learning by sharing
experience in artificial systems.

7 SUMMARY AND CONCLUSIONS

In this paper we reported the results of our work on distributed genetic algorithm
applied to a population of neural controllers used and exchanged by two robots
without a central control process. We discussed how technical problems that arise
could be solved and how the work could be used as a starting point for further
research. We proposed several ways of extending our design and implementation
and what must be done in order to use our ideas in societies with more than two
robots. Finally we proposed our solution to be applicable in broader context in the
area of multiagent learning and computational cognitivism.
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