
Computing and Informatics, Vol. 21, 2002, 455–487

PARALLEL REAL-TIME COMPUTATION:
SOMETIMES QUANTITY MEANS QUALITY∗

Selim G. Akl

School of Computing, Queen’s University

Kingston, Ontario K7L 3N6, Canada

e-mail: akl@cs.queensu.ca

Manuscript received 10 December 2001; revised 28 November 2002

Communicated by Peter Ružička

Abstract. The primary purpose of parallel computation is the fast execution of
computational tasks that require an inordinate amount of time to perform sequen-
tially. As a consequence, interest in parallel computation to date has naturally
focused on the speedup provided by parallel algorithms over their sequential coun-
terparts. The thesis of this paper is that a second equally important motivation for
using parallel computers exists. Specifically, the following question is posed: Can
parallel computers, thanks to their multiple processors, do more than simply speed
up the solution to a problem? We show that within the paradigm of real-time com-
putation, some classes of problems have the property that a solution to a problem
in the class, when computed in parallel, is far superior in quality than the best one
obtained on a sequential computer. What constitutes a better solution depends on
the problem under consideration. Thus, ‘better’ means ‘closer to optimal’ for opti-

mization problems, ‘more secure’ for cryptographic problems, and ‘more accurate’
for numerical problems. Examples from these classes are presented. In each case,
the solution obtained in parallel is significantly, provably, and consistently better
than a sequential one.

It is important to note that the purpose of this paper is not to demonstrate
merely that a parallel computer can obtain a better solution to a computational
problem than one derived sequentially. The latter is an interesting (and often sur-
prising) observation in its own right, but we wish to go further. It is shown here
that the improvement in quality can be arbitrarily high (and certainly superlinear

in the number of processors used by the parallel computer). This result is akin

∗ This research was supported by the Natural Sciences and Engineering Research Coun-
cil of Canada.

456 S. G. Akl

to superlinear speedup — a phenomenon itself originally thought to be impossi-

ble.

Keywords: Parallelism, real-time computation, optimization, cryptography, nu-
merical analysis

1 INTRODUCTION

The range and scope of computer applications in today’s society are breathtaking.
From business to medicine, from communication to education and entertainment,
there is an ever increasing demand for computers that can perform complex tasks
quickly and precisely. It is also becoming apparent that present and foreseeable
computers, largely conventional in design, will fall short of the expectations. In-
deed, on a sequential computer there is but one processor. An algorithm for solving
a problem on such a computer is executed one step at a time. Due to physical lim-
itations, single-processor computers are steadily approaching a point beyond which
they will be unable to provide answers to certain computational problems within
the required time limits.

One way out of this impasse is to abandon the sequential model of computation.
A parallel computer, by contrast with a sequential one, possesses several processors.
A problem to be solved is broken into smaller parts that are solved simultaneously.
The processors, working in parallel, execute several steps of an algorithm at the same

time. This way, we hope to achieve a significant reduction in the time required to
solve the problem at hand.

Ever since parallel computation appeared on the computer science scene as an
alternative to conventional computing, questions were raised regarding the capabili-
ties of parallel computers. The vast majority of these questions have to do with the
speedup, if any, provided by parallel computers: Can parallel computers solve com-
putational problems faster than sequential computers, and if so, how much faster?
In this paper, we ask a different type of question: Can parallel computers, thanks to
their multiple processors, do more than simply speed up the solution to a problem?
In particular, can a parallel computer provide a solution to a computational problem
that is better than the best-possible solution that can be obtained sequentially?

We begin by reviewing some of the issues surrounding the notion of speedup,
leading up to the central question of this paper. In what follows, the speedup
provided by a parallel algorithm when solving a problem is defined as follows: Worst-
case running time of the best sequential algorithm for the problem divided by the
worst-case running time of the parallel algorithm. Throughout the paper we adopt
the standard definition of time unit, that is, the unit traditionally used to measure
the running time of an algorithm [1, 13, 25, 37]: A time unit is the length of time
required by a processor to read a datum from memory, perform a constant-time
operation (such as adding two numbers), and write a datum to memory.

Parallel Real-Time Computation: Sometimes Quantity Means Quality 457

1.1 Speedup

As the raison-d’être of parallel computers is the speeding up of computations per-
formed sequentially (that is, using one processor), the first question to be asked was:
Is speedup possible at all? More specifically, and perhaps more precisely, if a com-
putation requires T1 time units on a one-processor computer, can it be performed
on a parallel computer with n processors, n > 1, in time Tn = T1/f(n), where
f(n) is ω(1) and O(n), that is, f(n) is asymptotically larger than any constant and
asymptotically no larger than n?

It is now widely known that this question is answered in the affirmative, at
least in theory. There is ample and well documented evidence of parallel algorithms
whose running time satisfies the aforementioned condition. For instance, parallel
algorithms using n processors and running in O(logn) time exist to

1. sort n numbers in non-decreasing order using comparisons [57],

2. find the convex hull of n planar points [37],

3. compute the discrete Fourier transform of n inputs [61],

to name just a few examples of problems for which the best sequential algorithms
run in O(n logn) time.

1.2 Superlinear Speedup

Having established that a speedup by a factor of f(n) is indeed possible, it was
natural to ask whether further speedup could be achieved through parallelism. The
second question, therefore, was: Is superlinear speedup possible? In other words,
can a computation requiring T1 time units sequentially be performed on a parallel
computer with n processors in time Tn = T1/g(n), where g(n) is Ω(n), that is,
g(n) is asymptotically larger than or equal to cn, for some positive constant c?
Once again, several examples of computations satisfying this condition have been
published. These examples, are less well known as they concern nonstandard, yet
realistic, paradigms, including, for example, problems where

1. all the data are not available at the outset of the computation, but instead
arrive over time; the computation is considered complete when all the data
arrived so far have been handled regardless of whether more data arrive later
[14, 15, 17, 18, 45, 46, 47],

2. the values of the data change as the algorithm proceeds; the computation is
considered complete when all the corrections arrived so far have been handled
regardless of whether more corrections arrive later [16, 45, 46, 47],

3. a computation is involved that is not efficiently invertible: with a sufficient de-
gree of parallelism, the inverse computation is not required; with an insufficient
number of processors, the inverse computation becomes necessary [2, 9].

458 S. G. Akl

1.3 Infinite Speedup

Taking the line of reasoning expressed in Section 1.2 to its logical limit, the ultimate
question was: Are there computations for which parallelism makes the difference

between success and failure? In other words, are there computational problems
whose solution can be obtained only on a parallel computer with sufficiently many
processors (while any computer with fewer processors is guaranteed to fail in com-
puting the solution)? Recent work has demonstrated that the answer here is also
positive. Examples include computations with deadlines, computations involving
several streams of input, and computations where data arrive in real time but each
new input depends on the previous output [1, 4].

1.4 Beyond Speedup

The purpose of this paper is to begin the exploration of other capabilities of parallel
computers beyond speedup (as originally hinted to in [1]). To this end, we wish to
ask whether parallel computers can, in some circumstances, do more than just speed
up the computation. We show that for real-time problems, a parallel computer can
obtain a solution that is better than that obtained by a sequential one. Consider
the following example.

Example 1.1. Suppose that a computer is programmed to play a two-player board
game of strategy (such as Checkers, Chess, or Go), against a human or another
computer. The computer program typically involves searching a tree data structure.
In this tree, each node represents a board configuration and each edge represents
a move. The root R of the tree represents the current configuration from which
the computer is to make a move. The children of the root represent all possible
board configurations reached by computer moves. The children of these represent
configurations reached by the opponent’s moves, and so on. In what follows we
assume that each node has B children. Associated with each node is an evaluation
function which assigns a value to that board configuration indicating its goodness
from the computer’s point of view.

In order to make a move, the computer searches the tree, up to a certain depth,
and determines (among all leaves at that depth or less) which leaf (call it L) is
best for it (assuming that each of the two players has chosen the best move from
its viewpoint at each level). The edge leaving the root (on the unique path leading
to L) is the selected move. Usually, such a move must be found by the computer
within a fixed amount of time, for example T time units.

Assume that it is the computer’s turn to move. If the computer is a sequential
one, it can search the game tree up to a depth of d1, that is, examine Bd1 leaves
in T time units. A parallel computer, with p processors, on the other hand, can
search the game tree up to a depth of dp, where dp > d1, that is examine Bdp leaves
in T time units. The parallel computer, therefore, makes a more informed decision
when choosing its move, having looked farther ahead in the game tree [5].

Parallel Real-Time Computation: Sometimes Quantity Means Quality 459

The situation described in the preceding example has worked fairly well for some
games, such as Chess. For instance, the world Chess champion today is a parallel
computer [50]. There is, however, no proof that this strategy works in all cases, for
at least two reasons:

1. The game tree is not searched in full: Nodes at depth dp do not necessarily
represent end-game configurations (the latter may occur at a depth D > dp).

2. The evaluation function may not measure the goodness of a position as accu-
rately as one would want.

As a result, the parallel computer may on occasion arrive at a move that is worse
than that obtained sequentially.

Yet, for many computational problems, parallel computation provides solutions
that are not only faster, but also better, than any solution obtained sequentially. We
offer three examples here:

1. optimization problems in which a solution is better if it is closer to optimal,

2. cryptographic problems in which a solution is better if it is more secure,

3. numerical problems in which a solution is better if it is more accurate.

The computations we describe fall within the real-time paradigm. Here, the data
needed to solve a problem are received on-line and the results of the computation are
to be delivered by a certain deadline. In each case we present, the parallel solution
is significantly better than the best solution obtained sequentially. Furthermore, the
improvement is provable and consistent. This point deserves to be stressed: The
purpose of this paper is not to demonstrate merely that a parallel computer can
obtain a better solution to a computational problem than one derived sequentially.
The latter is an interesting (and often surprising) observation in its own right, but we
wish to go further. It is shown in what follows that the improvement in quality can
be arbitrarily high (and certainly superlinear in the number of processors used by
the parallel computer). This result is akin to superlinear speedup — a phenomenon
itself originally thought to be impossible.

We coin a new term to express the improvement in the quality of a solution to
a problem afforded by parallel computation. Recall that the speedup is equal to the
ratio of the running time of a sequential algorithm to that of the running time of
a parallel algorithm, when both algorithms are used to solve a given computational
problem. In the same way, we define quality-up as the ratio of the quality of a so-
lution to a certain problem obtained in parallel to the quality of a solution to the
same problem computed sequentially.

The remainder of this paper is organized as follows. Some background material
relative to real-time computation and models of computation is presented in Sec-
tion 2. The three application areas illustrating the ability of parallel computers
to obtain solutions of higher quality than possible sequentially are the subject of
Sections 3, 4, and 5. Some concluding thoughts are offered in Section 6.

460 S. G. Akl

We close this section with the following important observation. There exists an
assumption underlying most theoretical results in parallel computation that leads
some readers (who are unfamiliar with the field, and hence unaware of the implicit
assumption) to ask: Why can’t we use a faster sequential computer and achieve the
same results obtained with the parallel one? In most cases, one can easily respond to
this question by showing how simple it is to defeat the ‘faster’ sequential machine.
For example, in a real-time environment (as in the present paper), it suffices to
make the data-arrival rate faster than the new and improved sequential machine
can handle! However, in order to avoid any such (perhaps confusing) arguments,
we make the standard assumption explicitly at the outset (at the risk of stating the
obvious): The analyses in this paper assume that all models of computation are the
fastest possible (within the bounds established by theoretical physics). Specifically,
no machine exists that is faster than the sequential computer of Section 2.2.1, and
similarly no parallel computer exists whose processors are faster than the processors
of the parallel computer of Section 2.2.2. This is the fundamental assumption in
parallel computation. One should also keep in mind here that the length of a time
unit is not an absolute quantity. Instead, the duration of a time unit is defined in
terms of the speed of the processors available (namely, the single processor on the
sequential computer and each processor on the parallel machine).

2 BACKGROUND

In this section we introduce the real-time paradigm as well as the models of compu-
tation used in this paper.

2.1 Real-Time Computation

The prevalent paradigm of computation, to which everyone who uses computers is
accustomed, is one in which all the data required by an algorithm are available when
the computer starts working on the problem to be solved. A different paradigm is
real-time computation. Here, not all inputs are given at the outset. Rather, the
algorithm receives its data (one or several at a time) during the computation, and
must incorporate the newly arrived inputs in the solution obtained so far. Often, the
data-arrival rate is constant; specifically, N data are received every T time units,
where both N and T are fixed in advance.

A fundamental property of real-time computation is that certain operations must
be performed by specified deadlines. Thus, one or more of the following conditions
may be imposed:

1. Each received input (or set of inputs) must be processed within a certain time
after its arrival.

2. Each output (or set of outputs) must be returned within a certain time after the
arrival of the corresponding input (or set of inputs).

Parallel Real-Time Computation: Sometimes Quantity Means Quality 461

Thus, for example, it may be crucial for an application that each input be operated
on as soon as it is received. Similarly, each partial solution (as well as the final
one) may need to be returned as soon as it is available [32, 40, 56]. It is helpful
to note here that, when no deadlines are imposed, computations for which inputs
arrive while the algorithm is in progress are referred to as on-line [27, 33, 35, 36],
incremental [21, 22, 49, 59], dynamic [11, 12, 67], and updating [20, 23, 28, 38, 53,
54, 62, 66]. It is also important to note that our definition, while striving to be as
general as possible, is particularly suitable for our purposes in this paper. Many
other definitions exist; see, for example, the various interpretations of the notion of
real time provided in [10, 42, 65].

2.2 Models of Computation

Two models, one sequential and one parallel, are applied to the solution of the
various real-time computational problems studied in this paper.

2.2.1 Sequential Model

This is the conventional model of computation used in the design and analysis of
sequential (or serial) algorithms. It consists of a single processor equipped with a
random-access memory to which the processor can gain access for the purpose of
reading and writing. The processor has some local registers for intermediate results,
a control memory to store its program, and some circuitry to perform arithmetic
and logical operations. It also has input and output devices for communication with
the outside world. During each cycle of the computation, the processor executes
one instruction from its program: It fetches a datum from memory, performs an
operation on it, and stores the result back in memory.

2.2.2 Parallel Model

Our chosen parallel model is the pipeline computer, shown in Fig. 1 [1]. In this
model, n processors, denoted by P1, P2, . . . , Pn, are connected to one another by
(one-way) communication links such that:

1. P1 receives its input from (and only from) the outside world.

2. Pi receives its input from (and only from) Pi−1, 2 ≤ i ≤ n.

3. Pi sends its output to (and only to) Pi+1, 1 ≤ i ≤ n− 1.

4. Pn sends its output to (and only to) a memory or a communications channel.

Data travel from P1 to Pn, with Pi beginning to operate only when it receives
input, 1 ≤ i ≤ n. Each processor is of the type described in Section 2.2.1.

It can be argued that the pipeline computer is the weakest of all models of
parallel computation in which the processors have some means of communicating
among themselves. Nonetheless this model, with its rudimentary communication

462 S. G. Akl

P P P P P1 2 3 n-1 n

 ...
INPUT OUTPUT

Fig. 1. Parallel computer

paths, is perfectly suitable when solving the real-time computational problems of
this paper. This is demonstrated in Sections 3, 4, and 5, where it is shown that
the pipeline computer affords a parallel algorithm that is significantly better than
a sequential one. One should also recall here that the weaker the computational
model used in an algorithmic analysis, the stronger the result obtained. This is
true because any algorithm designed for a certain model can be executed (through
simulation or otherwise) on a more powerful model without any loss in performance.
It follows therefore that the results of this paper, which are derived for the weakest of
all models of parallel computation (namely, the pipeline computer), hold in general
(that is, for all parallel models).

3 OPTIMIZATION

Let f be a function of some real (or complex) variables. The field of mathematical

optimization is concerned with finding an optimal value of f , subject to a number
of conditions. Here, f is called the objective function and the conditions are known
as the constraints. The optimal value is typically a maximum or a minimum of f
satisfying the constraints. Often, when the exact maximum (or minimum) is difficult
to obtain, an approximation of the optimal value is computed.

Mathematical optimization is a rich field of knowledge with many algorithms
and a diversity of practical applications. The field is usually divided into several
subfields, most notably: dynamic, linear, nonlinear, integer, stochastic, and geomet-
ric programming, control theory, combinatorial and discrete optimization, and so
on. In combinatorial optimization, for example, typical functions to be minimized
are defined in terms of weighted graphs; these include the problems of computing
minimum-weight spanning trees, matchings, and paths [41, 52].

Evidently, we are interested here in mathematical optimization in real time [3].
Our purpose is to demonstrate the ability of a parallel algorithm to do better than
the best sequential algorithm when solving an optimization problem in real time. In
this context, a better solution is one that is closer to optimal.

The computational paradigm used in this section is presented in Section 3.1
along with a definition of the specific problem to be solved. Sequential and parallel
solutions and their analyses are developed in Sections 3.2, 3.3, and 3.4, respec-
tively.

Parallel Real-Time Computation: Sometimes Quantity Means Quality 463

3.1 Real-Time Optimization

We begin by describing the specific computation chosen to illustrate our point. For
ease of exposition, the objective function to be optimized, as well as the constraints,
are kept as simple as possible. Thus, the optimization problem to be solved calls for
finding the maximum of a function of a single real variable, in a given range.

A few examples of the function to be maximized are first presented. The real-
time computational environment and the conditions under which the solution is to
be obtained are then introduced.

3.1.1 Examples of Functions to be Maximized

Consider the following functions whose maximum is to be found in a given range.

Example 3.1. Let f be a function of a real variable x. Given a real x0, and
a positive integer n, it is required to find an integer z∗ in the range R = [x0, x0 + n]
for which f reaches its maximum value f ∗ over all integers in R. (If f is not defined
for any integer in R, then ‘undefined’ is to be returned.)

It should be noted that nothing is known a priori regarding the exact form of f
or its behavior in the range R. In particular, it is unknown whether f is continuous,
or whether it is differentiable, or whether its first derivative has discontinuities in R.
All these considerations are in fact irrelevant to the problem at hand since we are
concerned with the maximum achieved by f at an integer inside the range R. Thus,
for instance, a function defined over the range [0.5, 10.5], may achieve an overall
maximum value at x = 2.73, while its maximum for an integer is achieved at z∗ = 8.

Note also that f may be defined in terms of simple arithmetic and logical oper-
ators such as absolute value, mod, integer division, ceiling, floor, min, max, or, and,
not, exclusive-or, and so on.

An example of a function here may be f(x) = |ax− b⌊x+1⌋ mod c|, for integer
constants a, b, and c.

Since nothing about f is known in advance, the only general procedure for solv-
ing this problem is exhaustive enumeration (i.e., try all integers in the given range
and find one—among perhaps several—for which the function attains its largest
value).

Example 3.2. Alternatively, the objective function may be defined recursively. Let
x0 be a real and n a positive integer. Thus, a sequence x1, x2, . . . , xn of real numbers
is obtained from the relation:

xi+1 = f(xi
b, i, n), for b > 1 and all i ≥ 0.

Here, f combines xi
b, i, and the constant n with various multiplicative and

additive terms, as well as other simple arithmetic functions. In this case, given f ,
x0, and n, it is required to find the largest of x1, x2, . . . , xn.

464 S. G. Akl

One example of such a function, which will prove particularly useful to our
subsequent analysis, is:

xi+1 =
[

(

⌊xi⌋+ (−1)i+1(i+ 1)
)2u

mod (n+ (−1)i+1)v
]w/v

(1)

for i ≥ 0, and positive integers u, v, and w, with w > 1.

Suppose for illustration that u = 1, v = 2 and w = 3. We have:

xi+1 =
[

(

⌊xi⌋ + (−1)i+1(i+ 1)
)2

mod (n+ (−1)i+1)2
]3/2

for i ≥ 0.
Taking, for instance, x0 = 14.0 and n = 10, we get: x1 = 18.520259, x2 =

225.06221, x3 = 216.0, x4 = 0.0, x5 = 125.0, x6 = 1000.0, x7 = 216.0, x8 =
742.54158, x9 = 64.0, x10 = 172.60069.

In other words, the xi values oscillate unpredictably, and that particular xi

achieving the maximum cannot be guessed in advance. The only way to find the
largest xi is to compute x1, x2, . . . , xn.

In some contexts the functions described in this example are called nonlinear

feedback functions (and sometimes aperiodic, chaotic, and complex functions) [19,
24, 26, 30, 34, 43, 44, 68].

Example 3.3. In fact, the function to be maximized may not even have a closed
form mathematically. The function may be defined by a program that takes a value
for x and returns f(x), presumably after performing certain tests on x. These tests
may include arithmetic, as well as logical operations, or even table lookup. Given
a range of x values, each value is fed to the program and the one achieving the
maximum is found.

For the purposes of this paper we make the following assumptions:

1. For definiteness, we assume henceforth that the objective function is of the
form given in Example 3.2, that is, the function f to be maximized is defined
recursively as: xi+1 = f(xi

b, i, n), where b > 1.

2. The function f to be maximized consists of a constant number of terms (i.e.,
f can be expressed using no more than a certain number of symbols fixed in
advance). Similarly, each of x0 and n fits in a constant number of words in
memory. It is to be noted, as a consequence, that the optimization problem to
be solved, being defined by f , x0, and n, has a constant size formulation.

3. Each of x1, x2, . . . , xn (and, consequently, the maximum value of f) also fits in
a constant number of words. This assumption and the previous one together
imply that the size of f, n, xi, i ≥ 0, and the current maximum is a constant
multiple of the word size in bits. Therefore, this quadruple can be transmitted
and received in a constant number of time units.

Parallel Real-Time Computation: Sometimes Quantity Means Quality 465

3.1.2 Computing the Maximum in Real Time

The specific problem to be solved in this section is defined as follows:

1. A computer system receives a stream of input in real time. These inputs repre-
sent the data of an optimization problem.

2. Time is divided into intervals. Each interval is T time units long, where T is
a constant.

3. At the beginning of the j-th time interval, j > 0, an objective function f j is
received, together with a pair of constraints Cj = (xj

0, n
j).

4. It is required that the pair (f j, Cj) be processed as soon as it is received and that
the maximum value of xj

1, x
j
2, . . . , x

j
n (or an approximation of it) subject to Cj be

produced as output as soon as it is computed. Furthermore, one output must be
produced at the end of each time interval (with possibly an initial delay before
the first output is produced).

5. Computational Assumption. In one time interval a processor can

(a) read f j, nj, xj
i , and the current maximum,

(b) compute xj
i+1 and the new maximum, and

(c) output f j, nj, xj
i+1, and the new maximum.

We now provide sequential and parallel solutions to this problem. This is fol-
lowed by a comparative analysis.

3.2 Sequential Solution

A function f j and a pair of constraints Cj are received at the beginning of the
j-th time interval. These must be processed and the required maximum (or an
approximation thereof) must be produced before the new function f j+1 and the new
pair of constraints Cj+1 are received (and demand to be processed) at the beginning
of the (j + 1)st time interval. A sequential computer, by definition, has only one
processor. Conforming to the computational assumption, in one time interval, the
processor

1. receives f j, xj
0, and nj,

2. computes xj
1 using xj

0, n
j, and the definition of f j, and

3. returns xj
1 as the required maximum.

Note here that xj
1 is not guaranteed to be the maximum of xj

1, x
j
2, . . . , x

j
n, as

specified by the problem definition. Since the sequential computer cannot compute
xj
2, x

j
3, . . . , x

j
n before the pair (f j+1, Cj+1) is received, it returns the only approxima-

tion of the maximum that it can obtain.

466 S. G. Akl

3.3 Parallel Solution

On a pipeline computer with n processors, P1, P2, . . ., Pn, processor P1 is in charge
of reading new inputs, while Pn is designated to produce the output. Therefore, at
the beginning of the j-th interval, P1 receives (f

j, Cj). It computes xj
1 and (for lack

of another value with which to compare it) calls it the current maximum. It then
sends the quadruple (f j, xj

1, n
j, current maximum) to P2. The jth time interval

has now ended and the (j + 1)st commences. While P1 is reading a new input,
P2 receives the quadruple sent by P1. It computes xj

2, compares it with current
maximum, updates the latter if necessary, and sends the new quadruple (f j, xj

2, n
j,

current maximum) to P3. This continues, with processor Pk computing xj
k during

time interval j + k − 1, j > 0, k ≥ 1. The maximum of xj
1, x

j
2, . . . , x

j
n is produced

by Pn at the end of the (j + n− 1)st time interval. One time interval later, that is,
at the end of the (j + n)th time interval, Pn produces as output the maximum of
xj+1
1 , xj+1

2 , . . . , xj+1
n .

3.4 Analysis

For concrete analysis, suppose that the function f j is of the form given by Equa-
tion (1). It is clear that, for this function, the ratio of xj

1 to the maximum of xj
1, x

j
2,

. . ., xj
n could be O(1/nw), in the worst case. Since the sequential computer returns

xj
1 as the maximum, while the parallel computer obtains the exact maximum, us-

ing n processors instead of one yields an O(nw) improvement in the quality of the
solution.

4 CRYPTOGRAPHY

We present a problem from real-time cryptography for which a parallel solution is
consistently better than a sequential solution. In Section 3, the notion of ‘better’
meant ‘closer to optimal’. In this section, ‘better’ is interpreted as meaning ‘more
secure’. Specifically, the problem to be solved is one in which blocks of data are
received by a computer system from the outside world at regular intervals and
must be encrypted. No input block can be stored unencrypted, and thus must be
processed as soon as it arrives. The encrypted blocks are to be produced as output,
also at regular intervals. If the computer system operates sequentially, it can apply
only one iteration of an encryption function on each block within the time available.
By contrast, if n processors are used, n iterations of the encryption function are
possible. This results in a significantly higher degree of security. In fact, we show
that the parallel implementation is infinitely better than the sequential one [7].

We first provide a brief description of some basic notions from the field of cryp-
tography. The problem to be solved is defined in Section 4.1. Sequential and parallel
solutions and their analyses are presented in Sections 4.2, 4.3, and 4.4, respectively.

Modern Cryptography. The purpose of contemporary cryptography is the
protection of digital information. The information may be, for example, personal,

Parallel Real-Time Computation: Sometimes Quantity Means Quality 467

commercial, financial, or military. It may be stored in the memory of a device (such
as a bank card or a computer), or it may be traveling on an insecure communications
channel (such as a telephone cable or the electromagnetic waves of a wireless trans-
mission). What is to be protected is the secrecy of the information, its integrity, its
authenticity, and so on.

In order to accomplish these goals, modern cryptography uses a mathematical
transformation known as a cryptosystem. Let M be a meaningful piece of informa-
tion, called the plaintext. Thus, M may contain, for example, alphabetical, numeri-
cal, sound, or image data. An encryption function E transforms M , using a key K,
into another piece of information C, referred to as the ciphertext. This function E
typically works in a number n of iterations as follows:

Ci = E(K,Ci−1),

where C0 = M and Cn = C. Usually, M is replaced with C (in memory or on
the communications channel) and the information contained in M is thus protected
against various forms of attack by an opponent (such as eavesdropping, for example).
When the plaintext is to be recovered by a legitimate party, a decryption functionD,
using cryptographic key K ′, operates on C (in a manner similar to the way E
operated on M) and allows M to be obtained from the ciphertext.

What constitutes an iteration in the definition of E (and D) depends on the
cryptosystem being used.

Symmetric Cryptosystem. If the cryptosystem is a symmetric one, meaning
that K = K ′, then an iteration of E consists of a constant number r of substitution-
transposition rounds, numbered 1 to r. Here, the text to be encrypted is viewed
as a string of bits. This string is divided into blocks, where each block M is b bits
long. The function E is now applied to M . The first round receives M as input.
Subsequently, the output of round i is the input to round i + 1, 1 ≤ i ≤ r − 1.
Within each round, a substitution followed by a transposition are performed under
the control of the key K:

1. Substitution: Each bit of the binary string received as input to this round is
replaced by another bit (for example, assuming that b = 6, the block 101101
may become 011100 under a substitution transformation).

2. Transposition: The bits of the binary string resulting from the substitution
phase are permuted (for example, the block 011100 may become 100110 under
a transposition transformation).

The same description applies to an iteration of D. An example of a symmetric
cryptosystem is the Data Encryption Standard (DES) [48, 58, 60, 64]. Here, M
and C are each 64 bits long, K has 56 bits, and one iteration consisting of 16 rounds
is performed. Usually, the number of iterations (and hence the total number of
rounds) depends on the length of the key. The longer is the key used, the larger is
the number of iterations possible. For example, a 112-bit key for DES would allow

468 S. G. Akl

two iterations (that is, 32 rounds). For simplicity, we assume in what follows that
a k-bit key allows k encryption rounds.

Asymmetric Cryptosystem. In an asymmetric cryptosystem K 6= K ′. An
iteration of E usually performs an operation in modulo arithmetic, such as raising
an integer to some exponent, followed by modular reduction. In this case, the text
to be encrypted is broken into blocks (of alphabetic characters, for example), and
each block is mapped to an integer M , where 0 ≤ M ≤ m − 1, and m is a large
positive integer called the modulus. For 1 ≤ i ≤ n, an iteration takes the form

Ci = Cei
i−1 mod m,

where ei is a positive integer. In particular,

Cn = M e1e2···en mod m.

The pair (e1e2 · · · en, m) represents the encryption key. Typically, the exponent
e1e2 · · · en of M depends on m: A larger modulus allows for a larger exponent, and
hence for more iterations of the encryption function E. A similar transformation is
used to describe an iteration of D.

The preceding description of an iteration of E is representative of asymmet-
ric encryption and is inspired by the Rivest-Shamir-Adleman (RSA) cryptosystem,
named after its inventors [48, 58, 60, 64].

Modern cryptography is founded on the principle that it should be computa-

tionally hard to obtain the plaintext from the ciphertext without knowledge of the
decryption key. For most cryptosystems (symmetric and asymmetric) a necessary
and often sufficient condition for achieving this goal is to use keys that are large in

size. Of course, a large key size makes it impractical for an opponent to launch an
exhaustive attack based on key enumeration. Of more importance to our purpose in
this paper, however, is the fact that a large key contributes to making the function E
computationally hard to invert. One reason for this is that a large key allows for
a large number n of iterations of E when computing C from M . In the remainder
of this paper we assume that a cryptosystem implemented using a long key is more
secure than the same cryptosystem implemented using a shorter key.

The results in this paper apply to both symmetric and asymmetric cryptosys-
tems. However, we do not specify exactly which functions are used for encryption
and decryption. Indeed, any function fitting the broad description in this section will
be adequate. For definiteness, we do present in our subsequent treatment examples
of general functions encompassing each of the two families. We also make specific
assumptions about the computational requirements of these functions and their
level of security. Detailed introductions to the field of cryptography are provided
in [48, 58, 60, 64].

Parallel Real-Time Computation: Sometimes Quantity Means Quality 469

4.1 Real-Time Cryptography

The problem to be solved is defined as follows:

1. A computer system receives a stream of plaintext data in real time. These data
are to be encrypted.

2. Time is divided into intervals. Each interval is T time units long, where T is
a positive constant.

3. At the beginning of each time interval a block of data is received. Depending
on the cryptosystem being used, this block may be regarded as:

(a) A string of bits of constant length, in case of a symmetric cryptosystem.

(b) A nonnegative integer smaller than some given modulus, in case of an asym-
metric cryptosystem.

4. No block received can be stored in plaintext form. Therefore, each input block
must be processed as soon as it arrives. Each output block is then stored in
some memory or transmitted over an insecure channel.

5. An encrypted block is to be produced as output at the end of each time interval
(with possibly an initial delay before the first output is produced).

6. Computational Assumptions. The operation of reading a block and that
of storing (or transmitting) it require one time unit each. One iteration of the
encryption function E requires T − 2 time units. Depending on whether a sym-
metric or asymmetric cryptosystem is used, this assumption has the following
implications:

(a) Symmetric cryptosystem. Recall that an iteration consists of a constant
number r of rounds. Since an iteration requires T − 2 time units, only r
rounds are performed in one interval.

(b) Asymmetric cryptosystem. Computing Cei
i−1 mod m requires on the order of

log2 ei time units, 1 ≤ i ≤ n, since exponentiation can be performed through
squaring and multiplication. Again, since one iteration requires T − 2 time
units, the value of ei that can be used within an interval is bounded from
above by a constant.

7. Cryptographic Assumptions. One iteration of the cryptographic function E
(whether symmetric or asymmetric) is breakable without knowledge of any cryp-
tographic key used. Specifically, an opponent can with reasonable computational
effort recover M from C1 by inverting E, that is, by computing

M = E−1(C1).

On the other hand, without knowledge of the encryption/decryption keys, n ite-
rations of the encryption function E (whether symmetric or asymmetric) are

470 S. G. Akl

unbreakable with current mathematical knowledge and present (and foreseeable)
computers. Specifically, given Cn, an opponent cannot feasibly recover M .

We now present two implementations of this computation, the first sequential
and the second parallel.

4.2 Sequential Solution

Suppose that the computer system receiving the real-time input is a sequential
one, that is, there is a single processor in charge of reading each successive block,
encrypting it, and finally storing (or transmitting) it. Because a block needs to
be processed as soon as it is received, the computer must have finished processing
a block by the time the following block arrives. Also, since an interval of T time
units separates consecutive blocks, only one iteration of the encryption function E
can be performed on a block before the latter is stored or transmitted. Specifically,

1. If a symmetric cryptosystem is used, then the sequential computer performs r
substitution-transposition rounds on a block within an interval.

2. If an asymmetric cryptosystem is used, then the sequential computer performs

C1 = M e mod ms

where ms is the sequential modulus and e ≤ 2T −2, since log2 e cannot exceed
T − 2.

In either case, if the plaintext consists of w blocks, the sequential computer
requires wT time units to encrypt all blocks.

4.3 Parallel Solution

In this section we consider the case in which the computer system receiving the
real-time input is a parallel one. Naturally, when a pipeline computer (with n
processors) is used to implement real-time encryption, processor P1 is in charge of
reading each successive input block, while processor Pn is responsible for storing
(or transmitting) the corresponding (encrypted) output block. As observed in the
sequential implementation, because a new input block needs to be processed as soon
as it is received, the computer must have finished processing a block when the next
block arrives. Therefore, again as in the sequential implementation, since a new
input block is received every T time units, processor P1 can perform only one it-
eration of the encryption function E on each block it receives. However, unlike
the sequential implementation, the parallel implementation allows further iterations
to be performed. Thus, when P1 has executed one encryption iteration on some
block M , it sends the resulting encrypted block C1 to P2, and turns its attention
to the next incoming plaintext block. Now P2 can execute a second encryption

Parallel Real-Time Computation: Sometimes Quantity Means Quality 471

iteration on C1, before sending the resulting block C2 to P3. This continues until
Cn emerges from Pn. Meanwhile, n − 1 other blocks reside in the pipeline (one
in each of the other processors) at various stages of encryption. One time in-
terval after Pn has produced its first encrypted block, it produces a second, and
so on, so that an encrypted block is stored or transmitted every T time units.
If there are w blocks in all, the final encrypted block is stored or transmitted
by Pn

nT + (w − 1)T

time units after the first plaintext block arrives at P1.
Each input plaintext block is therefore subjected to n encryption iterations.

Specifically,

1. If a symmetric cryptosystem is used, then the parallel computer performs rn
substitution-transposition rounds on a block.

2. If an asymmetric cryptosystem is used, then processor Pi of the parallel computer
performs

Ci = Ce
i−1 mod mp,

for 1 ≤ i ≤ n, where C0 = M , Cn = C, e ≤ 2T −2, and mp is the parallel
modulus, with mp > ms. In other words, C = M en mod mp.

Note that, in the absence of real-time deadlines, the same computation would require
wnT time units sequentially.

4.4 Analysis

By our initial assumptions, the sequential implementation provides a level of encryp-
tion that is effectively breakable, while the parallel implementation provides a level
of encryption that is unbreakable for all practical purposes. It is therefore possible
to say that the parallel solution to the real-time encryption problem is infinitely

better than the sequential one.
For a quantitative analysis, we introduce the following parameters. We define

the insecurity value V , 0 ≤ V ≤ 1, to be a measure of the likelihood that a cryp-
tosystem can be broken. Similarly, let the security value, 1 − V be a quantity that
expresses the level of security offered by a cryptosystem. For an unconditionally
secure cryptosystem, V = 0, and the security value is 1. At the other extreme,
a cryptosystem that is guaranteed to be breakable has V = 1 and a security value
of 0. The majority of cryptosystems have a security value between 0 and 1.

Suppose that two implementations of a cryptosystem have insecurity values V1

and V2, respectively, where V1 > V2. The improvement in security provided by the
second implementation is given as (1− V2)/(1− V1).

In the context of our discussion, we define V as follows. Let x be the number
of iterations of the encryption function E performed by a certain implementation

472 S. G. Akl

of a given cryptosystem. Then, for this implementation, V = 1/x. The sequential
implementation of Section 4.2 executes one iteration of E, and consequently its
insecurity value Vs is 1. For the parallel implementation of Section 4.3, the number of
iterations is n, resulting in an insecurity value Vp of 1/n. For large n, Vp approaches 0.
Hence, the improvement in security provided by the parallel implementation over
the sequential one is (1− Vp)/(1− Vs). For n > 1 this improvement is unbounded.

5 NUMERICAL COMPUTATION

A further class of computational problems is now identified in which parallelism
provides better (in addition to faster) solutions. Specifically, we study the class of
numerical computations. In this context, a solution is ‘better’ if it is ‘more accurate’.
In order to convey the idea in the most straightforward way, two simple problems
in numerical computation are chosen for illustration, namely, computing definite
integrals and finding roots of nonlinear equations. Specifically, we show that when
these problems are to be solved in a real-time environment, a solution obtained by
a parallel computer is significantly more accurate than one derived sequentially [8].

We begin by defining numerical computation along with the notion of error and
its application to the two problems chosen for illustration. Real-time numerical
computation is the subject of Section 5.1. Sequential and parallel solutions and
their analyses are presented in Sections 5.2, 5.3, and 5.4, respectively.

One of the oldest and most important uses of computers is to perform numerical
calculations, primarily in scientific and engineering applications. In what follows, the
characteristics of numerical computation are first outlined. A definition of numerical
error is then provided. Finally, two examples of numerical problems are used for
illustration.

Characteristics. Numerical problems, whether they occur in weather predic-
tion or the design of a high-speed train, share a number of common properties that
distinguish them from other types of computations:

1. Because they typically involve physical quantities, their data are represented
using floating-point numbers.

2. Their solutions are obtained using mathematical algorithms.

3. Their algorithms often consist of a number of iterations : Each iteration is based
on the result of the previous one and is supposed, theoretically, to improve
on it. Sometimes, the algorithm performs a discretization: A computation on
a continuous function is transformed into a discrete operation.

4. Generally, the results produced by numerical algorithms are approximations of
exact answers that may or may not be possible to obtain.

5. There is an almost inevitable element of error involved in numerical compu-
tations: Roundoff errors (which arise when infinite precision real numbers are
stored in a memory location of fixed size), truncation errors (which arise when

Parallel Real-Time Computation: Sometimes Quantity Means Quality 473

an infinite computation is approximated by a finite one), and discretization er-

rors (when operations on discrete values replace computations on continuous
functions).

Examples of numerical problems include solving systems of equations, computing
eigenvalues, and performing polynomial interpolations [29, 39, 51, 55, 63].

Numerical Error. By properties 4 and 5, a numerical algorithm only com-
putes an approximation of the true answer to a problem, and this answer therefore
contains a certain amount of error. Let the exact answer to a problem be Aexact and
the approximate answer obtained numerically be Aapproximate. Then, the absolute

numerical error Eabsolute in Aapproximate is defined as

Eabsolute = Aexact − Aapproximate,

while the relative numerical error Erelative is

Erelative =
Eabsolute

Aexact
.

When analyzing a numerical algorithm it is customary to derive an estimate of
the error (absolute or relative). Usually, this estimate is in the form of an upper
bound on the absolute value of the numerical error. Quite often, this bound for an
absolute error takes the form

|Aexact − Aapproximate| ≤
K

g(N)
,

where K is a constant that depends on the problem at hand, N is a parameter
of the algorithm (such as, for example, the number of iterations or the number of
discretization steps), and g(N) is an increasing function of N .

Numerical Integration. Given a function f of a real variable x, defined over
an interval [a, b] of values of x, it is required to compute the definite integral

Iexact =

b
∫

a

f(x)dx.

For example, consider the function f(x) = e−xsinx

. In this case, and for most non-
trivial values of f , computing Iexact is very difficult analytically. Instead, numerical
algorithms are used to compute an approximation. One such algorithm is the trape-
zoidal method. In it, the function f is replaced with a piecewise linear function that
approximates it over [a, b]. Let h = (b − a)/N , for some N ≥ 1. The interval [a, b]
on the x-axis is divided into N subintervals, such that x1 = a, xN+1 = b, and
xi = a+ (i− 1)h, for i = 2, 3, . . . , N . Thus,

Iapproximate =
h

2

(

f(a) + 2
N
∑

i=2

f(xi) + f(b)

)

.

474 S. G. Akl

Now, assuming that f ′′, the second derivative of f with respect to x, is continuous
over [a, b], it can be shown that

|Iexact − Iapproximate| ≤
(b− a)3D

12N 2
,

where D > 0 and |f ′′(x)| ≤ D, for all x in [a, b].
Finding Roots of Nonlinear Equations. It is often required to find the root

of an equation of one variable, such as ex − cosx = 0. This is usually impossible to
do analytically, and one must resort to a numerical algorithm in order to obtain an
approximate solution. One such algorithm is the bisection method.

Suppose that f(x) is a continuous function, with a and b two values of the
variable x such that f(a)f(b) < 0. A zero of f , that is, a value xexact for which
f(xexact) = 0, is guaranteed to exist in the interval [a, b]. Let a1 = a and b1 = b.
Now the interval [a1, b1] is bisected, that is, its middle point m1 = (a1 + b1)/2 is
computed. If f(a1)f(m1) < 0, then xexact must lie in the interval [a2, b2] = [a1, m1];
otherwise, it lies in the interval [a2, b2] = [m1, b1]. The process is now repeated on
the interval [a2, b2]. This continues until an acceptable approximation xapproximate of
xexact is obtained, that is, until for some N ≥ 1, |bN − aN | < α, where α is a small
positive number chosen such that the desired accuracy is obtained. When the latter
condition is satisfied, xapproximate = (aN + bN)/2. Because

|xexact − xapproximate| ≤
|bN − aN |

2
≤

|bN−1 − aN−1|

22
≤ · · · ≤

|b1 − a1|

2N
,

the absolute error bound is

|xexact − xapproximate| ≤
|b− a|

2N
.

5.1 Real-Time Numerical Computation

In this section we define a general numerical problem that needs to be solved in a
real-time setting.

A computational environment subject to the following conditions is assumed:

1. A computer system receives a stream of inputs in real time. These inputs rep-
resent the data of a numerical computation.

2. Time is divided into intervals. Each interval is n+2 time units long, where n is
a positive integer.

3. At the beginning of each time interval, a set S of data is received by the computer
system. The set S represents the data to some numerical computation whose
output isAapproximate. For example, for the problems of numerical integration and
finding roots of nonlinear equations, the set S contains the specific function f(x)
and the values a and b.

Parallel Real-Time Computation: Sometimes Quantity Means Quality 475

4. It is required that S be processed as soon as it is received and that Aapproximate be
produced as output as soon as it is computed. Furthermore, one output must be
produced at the end of each time interval (with possibly an initial delay before
the first output is produced).

5. Computational Assumptions. We assume that:

(a) The operation of reading S, and that of producing Aapproximate as output once
it has been computed, require one time unit each.

(b) In computing Aapproximate, the numerical algorithm performs n iterations (if
it is an iterative method) or n discretization steps (if it is a discretization
method) in n time units. Hereafter, we refer to iterations and discretization
steps as passes.

6. Error Bound Assumption. Let Aexact be the exact answer to the problem at
hand. For this problem and the algorithm used to solve it

|Aexact − Aapproximate| ≤
K

g(N)
,

where K is a constant that depends on the problem, N is a parameter of the
algorithm (that is, N is the number of passes), and g(N) is an increasing function
of N .

5.2 Sequential Solution

We begin by presenting a solution which assumes that the computer system receiving
the real-time data is a sequential one. Here, there is a single processor whose task
is to read each incoming S, to compute Aapproximate, and to produce the latter as
output. Recall that the computational environment we assumed dictates that a new
input set be received at the beginning of each time interval, and that such a set
be processed immediately upon arrival. Therefore, the processor must have finished
processing a set before the next one arrives. Since one interval is n + 2 time units
long, it follows that the algorithm can perform no more than n passes on each input
S.

5.3 Parallel Solution

Our second solution to the real-time numerical computation assumes that the com-
puter system is a parallel one. When solving the problem of Section 5.1 on the
n-processor computer of Section 2.2.2, it is evident that processor P1 must be des-
ignated to receive the successive input sets S, while it is the responsibility of Pn

to produce Aapproximate as output. As pointed out in Section 5.2, the fact that each
set needs to be processed as soon as it is received implies that the processor must
be finished processing a set before the next one arrives. Since a new set is received

476 S. G. Akl

every n + 2 time units, processor P1 can perform only n passes on each set it re-
ceives. Unlike the sequential solution of Section 5.2, however, the present algorithm
can perform additional passes. This is done as follows. Once P1 has executed its
n passes on S, it sends the intermediate results, along with S, to P2, and turns its
attention to the next input set. Now P2 can execute n passes before sending the
results (along with S) to P3. This continues until Aapproximate is produced as output
by Pn. Meanwhile, n− 1 other input sets co-exist in the pipeline (one set in each of
P1, P2, . . . , Pn−1), at various stages of processing. One time interval after Pn has
produced its first Aapproximate, it produces a second, and so on, so that an output
emerges from the pipeline every n+2 time units. Note that each output Aapproximate

is the result of applying n2 passes to the input set S, since there are n processors
and each executes n passes.

5.4 Analysis

Our purpose is to show that a parallel computer can obtain a solution that is better,
in other words, more accurate, than one obtained by a sequential computer. There-
fore, this analysis focuses, not on the reduction in the running time, but rather on
the reduction in the size of the error, achieved through parallelism. In what follows
we derive a bound on the size of the error in Aapproximate for the sequential and par-
allel solutions. For definiteness, we use the two numerical computations introduced
at the beginning of this section.

5.4.1 The Trapezoidal Method

Here, the numerical problem to be solved is to compute the definite integral of a given
function f(x) from x = a to x = b. We have g(N) = N 2 (and K = (b − a)3D/12).
The sequential computer performs n passes, that is, it divides the interval [a, b] into
n subintervals to compute Iapproximate, and hence N = n. Consequently,

|Iexact − Iapproximate| ≤
K

n2
.

By contrast, the parallel computer performs n2 passes, that is, it divides the interval
[a, b] into n2 subintervals. Each processor in the pipeline computes the definite inte-
gral over n consecutive subintervals. Specifically, with h = (b− a)/n2, P1 computes

I1 =
h

2

(

f(a) + 2
n
∑

i=2

f(xi) + f(xn+1)

)

and sends it to P2 along with f , a, and b. Now P2 computes

I2 = I1 +
h

2



f(xn+1) + 2
2n
∑

i=n+2

f(xi) + f(x2n+1)





Parallel Real-Time Computation: Sometimes Quantity Means Quality 477

and sends it to P3 along with f , a, and b. This continues until Pn computes

In =
n−1
∑

i=1

Ii +
h

2



f(x(n−1)n+1) + 2
n2

∑

i=(n−1)n+2

f(xi) + f(b)





and produces it as Iapproximate. Therefore, with N = n2,

|Iexact − Iapproximate| ≤
K

n4
.

It follows that, in the worst case, the error in the solution obtained in parallel with
n processors is n2 times smaller than the error in the solution obtained sequentially.

5.4.2 The Bisection Method

The numerical problem to be solved here is to find a zero for a continuous function
f(x) that falls between x = a and x = b. In this case, g(N) = 2N (and K = |b−a|).
Sequentially, n passes of the bisection method are performed to obtain xapproximate,
that is, N = n, and

|xexact − xapproximate| ≤
K

2n
.

In parallel, each processor in the pipeline performs n passes of the bisection
method. Specifically, P1 performs n passes and sends (an, bn) to P2 along with f .
The latter performs n additional passes and sends (a2n, b2n) to P3 along with f .
Eventually, Pn performs the final n passes and obtains xapproximate as (an2 + bn2)/2.
Therefore, N = n2, and

|xexact − xapproximate| ≤
K

2n2
.

The ratio of the sequential error to the parallel error in this case is 2n(n−1). In other
words, increasing the number of processors by a factor of n leads to a reduction in
the size of the error by a factor on the order of 2n

2

.

6 CONCLUSION

Parallelism was invented in order to speed up computations. Today, the principal
purpose for using parallel computers remains the execution of computations that
require an inacceptably long time when performed sequentially. The overwhelming
majority of theoretical and empirical analyses of parallel algorithms use the speedup
provided by these algorithms as a measure of their goodness. Speedup is usually
defined as the ratio of the time required by the best sequential algorithm solving
the problem at hand to the time required by the parallel algorithm being evaluated.
Here, time refers to worst-case time and is typically a function of the size of the
problem. It is also customary to express the number of processors used by a parallel

478 S. G. Akl

algorithm as a function of the size of the problem. For these reasons, speedup
has been traditionally evaluated in terms of its relation to the number of processors.
Thus, a speedup may be sublinear, linear, or superlinear in the number of processors.

Another justification for using parallel computers, however, and one that is
important in its own right, turns out to be a by-product of their speed. In this
paper we articulated the thesis that other measures of the goodness of parallel
algorithms may be employed. In particular, one such measure proposed here is
the quality of the solution obtained by a parallel algorithm. Thus, we set out to
address the following question originally asked in [1]: Can a parallel computer not
only reduce the amount of time required to solve a problem sequentially, but also
improve the quality of the solution obtained by a sequential computer? It was shown
in this paper that for certain computational problems in a real-time environment, the
answer is definitely affirmative. Parallel computers can often solve computational
problems faster, while at the same time delivering solutions that are better than
is possible sequentially. For many of these computations, the ratio of the quality
of the solution obtained by the parallel algorithm to the quality of the solution
obtained by the best possible sequential algorithm grows arbitrarily large in the
worst case. In particular, there exist problems for which an n-fold increase in the
number of processors typically results in a solution that improves the one computed
sequentially by a factor exponential in n.

These results suggest that, while on the surface the main purpose of paral-
lelism is to speed up computation, a closer look reveals that there is more to it
than meets the eye. Clearly, in each case where a superlinear improvement in the
quality of the solution is observed, the underlying cause for the phenomenon is
not the fact that the parallel algorithm is faster than the sequential one. Rather,
it is the existence of several processors working in parallel. Furthermore, the net
effect (that is, the observed phenomenon itself) is entirely distinct from speedup.
Indeed, for the examples studied in this paper, the speedup achieved by the par-
allel approach is far from spectacular. It should also be pointed out that the
parallel algorithms of this paper would not have succeeded in obtaining solutions
of such quality to the problems they tackled had the time between data arrivals
been smaller or had fewer than the required number of processors been avail-
able.

Additional examples of real-time optimization problems and their parallel solu-
tions can be easily developed along the same lines outlined in this paper. These inclu-
de, for example, problems that call for the computation of shortest paths, maximum-
sum subsequences, and minimum-weight matchings and spanning trees [6]. Further-
more, for the class of NP-hard problems, several real-time approximation algorithms
have been proposed (for a survey, see [36]). However, all of these algorithms are se-
quential, and none of the problems states either the rate at which data are to be
received or the rate at which results are to be produced. Developing parallel real-
time approximation algorithms for NP-hard problems, that also take into account
the input and output rates, appears to be a worthwhile prospect.

In Section 4, a real-time cryptographic problem is presented for which the pa-

Parallel Real-Time Computation: Sometimes Quantity Means Quality 479

rallel solution is significantly better than one computed sequentially. The following
remarks are in order regarding the problem and its two solutions:

1. The cryptographic assumption made in Section 4.1 is that one iteration of the
encryption function E is readily breakable, while n iterations are effectively
unbreakable. Clearly, this is an abstraction that allows for a more general treat-
ment, while simplifying the presentation and subsequent analysis. It is impor-
tant to note here that, in practice, one iteration of E is likely to provide some
form of security. Furthermore, this level of security increases with subsequent
iterations. These considerations can be easily incorporated in the analysis, es-
sentially without changing the results of this paper.

2. A related observation concerns the quantitative analysis of Section 4.4. There,
we define the security value of a cryptographic implementation as 1−V , where V
is the inverse of the number of iterations x of the encryption function. This
measure has the advantage of being intuitive, while at the same time leading to
a more comprehensive coverage of cases. Evidently, many other measures (more
closely tied to specific cryptosystems) are possible. For example, some cryp-
tosystems show a threshold behavior: If fewer than n iterations of encryption
are applied to the input data, the system is breakable, whereas n iterations or
more render it practically secure. In this case, V = 1 for x < n, and V = 0
for x ≥ n. Here, the improvement in security is infinite. As another example,
note that the complexity of brute-force attacks on cryptosystems typically grows
exponentially with the number of iterations, if we assume that every iteration in-
creases the key length by a fixed amount. In this case we may take, for instance,
V = 1/2x. Further, let us define the security value here as 1/V . It follows that
(1/Vp)/(1/Vs) = 2n−1, implying that the improvement grows exponentially as
n increases. It is apparent that each of these measures strengthens the results
of Section 4.4.

3. The computational problem studied in this paper can be generalized in the fol-
lowing way. Consider a communication system in which a certain transformation
operation is to be applied on the data before transmission. The various forms of
coding, such as source coding, error correction coding, and of course encryption,
are examples of such a transformation operation. Moreover, the “goodness” of
the transformation can be measured. Thus, for example,

(a) A source coding algorithm is “better” if it yields a higher compression rate,

(b) An error correction code is “better” if it provides a superior error correction
capability, and

(c) A cryptosystem is “better” if it affords more security.

In addition, the following characteristic holds: The quality of the transformation
increases with more processing applied to the data. For any of these computa-
tional problems, therefore, a parallel approach will lead to a “better” solution
in a real-time environment than one obtained sequentially.

480 S. G. Akl

It is shown in Section 5 that the accuracy of a solution to a numerical prob-
lem can be increased through the use of parallelism. Numerical computations that
present themselves naturally here are numerical integration and finding roots of
nonlinear equations. These computations were used to show that the ratio of the
numerical error in the solution obtained sequentially to the numerical error in the
solution computed in parallel is superlinear in the number of processors used on
the parallel computer. In the same vein, it would be interesting to discover other
instances of numerical problems within the real-time paradigm for which solutions
obtained in parallel are of better quality than those computed sequentially. Can-
didate numerical computations for this purpose are polynomial interpolation and
power series manipulation, in which the data arrive in real time.

The real-time computations studied in this paper differ from the one described
in [6] in the following way. In the real-time optimization problem of [6], the pur-
pose is to compute at each time interval the spanning tree of least possible weight
for the current graph. At each time interval a new vertex and its associated
edges are added to the graph, and must be incorporated in the solution obtained
so far. Thus, each output depends on all previous inputs. By contrast, in the
problems of Sections 3.1, 4.1, and 5.1, each time interval procures an entirely
new problem to be solved. It follows that each output is entirely independent
of any previous input. It may be useful to find real-time problems for the ap-
plication areas exemplified in this paper where each output depends on previous
inputs in a nontrivial way. It is especially interesting to note in this regard that
for the nonlinear feedback functions of Example 3.2 the ratio of the exact so-
lution obtained in parallel to the approximate solution obtained sequentially is
arbitrarily large in the worst case. This effect would certainly be magnified if
the output of each computation were to be used as the input to the next com-
putation (namely, if the maximum of xj

1, x
j
2, . . . , x

j
n were to serve as the initial

value xj+1
0).

Another paradigm of real-time computation occurs when corrections to the exis-
ting data arrive on line and must be incorporated in the solution to the problem at
hand [16, 46]. Within this framework, an interesting case arises in connection with
the minimum-weight spanning tree (MST) problem when corrections to the weights
of the edges currently in the MST are received in real time and must be taken into
consideration. Sequential and parallel algorithms for this problem are described
in [21, 28, 54]. However, while these algorithms update the MST as required, their
analyses (much like those of the algorithms in [36]) do not allow for the corrections
to arrive, or for the results to be produced, at a certain specified rate. Here too an
open avenue for research suggests itself quite naturally.

As pointed out in Section 1.3, many computational problems are inherently par-

allel : If the available number of processors is smaller than the number of processors
required to solve one of these problems (even if the difference is one processor), then
the running time of the parallel algorithm is no better than that of the best sequen-
tial algorithm for the same problem [1]. Some problems, by contrast, are believed to
be inherently sequential : No efficient parallel algorithm is known for solving any of

Parallel Real-Time Computation: Sometimes Quantity Means Quality 481

these problems [31]. Real-time computation allows a different look at (apparently)
inherently sequential problems. Suppose that a problem can be solved optimally in
n (consecutive) time units. Further, let a new such problem be received by some
computer system every time unit. The computer system is to process each new
problem as soon as it arrives and produce its solution no later than n time units
after receiving the problem. (These conditions are not unlike those established in
Sections 3, 4, and 5.) The parallel pipeline computer of Section 2.2.2 uses n pro-
cessors to solve m such problems in (m − 1) + n time units. After an initial delay
of n time units, an answer is produced every time unit. The parallel computer,
therefore, meets the requirements of the problem. Furthermore, these computations
(supposed to be inherently sequential) now seem to require constant time. On the
other hand, it is clear (and paradoxical) that a sequential computer is hopelessly
inadequate to solve these problems.

To date, only one computational paradigm, namely, real-time computation, has
been identified, in which parallel computers obtain better solutions faster. Within
this paradigm, three problem areas manifesting this phenomenon have, so far, been
recognized, namely, optimization, cryptography, and numerical computation. As
noted in this paper, there are many ways to measure the quality of a solution. Thus,
one solution is ‘better’ than another if it is ‘closer to optimal’ (in optimization), ‘more
secure’ (in cryptography), and ‘more accurate’ (in numerical computation). Other
areas of computation bring different meanings to the word ‘better’, and real-time
parallel computation may have a role to play therein. Two such areas mentioned
earlier in this section are source coding and error correction. A third example that
comes to mind is statistics. Here, a better statistical measure may be one based on
a larger sample size. Consider, for example, a computer that receives data in real
time and must keep track of the average of all inputs received so far, and report such
average. A sequential computer can only incorporate a subset of the data received
at each time interval when computing the new average. By contrast, a parallel
computer may be able to include most, if not all, of the received data. The average
reported by the parallel computer at the end of each time interval is better than
that obtained sequentially.

Other areas beside real-time computation need to be explored for further mea-
sures to evaluate parallel algorithms. As mentioned in the previous paragraph,
every example of a computation where a parallel computer provides a better solu-
tion than a sequential one, has occurred within the real-time paradigm. Clearly,
it would appear especially relevant to determine whether other paradigms of com-
putation exist in which this phenomenon manifests itself. A candidate paradigm
of this sort is one in which the data needed by an algorithm can be acquired from
one of several sources. Each source holds a set of inputs sufficient by itself to solve
the problem at hand. The inputs held by one particular source lead to a solution
that is ‘better’ than any solution reached by using data from another source. At
any given time, a single processor can acquire data from exactly one source. Fur-
thermore, a source that is not selected for providing input to the algorithm ceases
to exist (and its data can no longer be retrieved). In this paradigm, a sequen-

482 S. G. Akl

tial computer can find the best solution with probability 1/n, where n ≥ 1 is the
number of sources. A parallel computer with n processors, on the other hand, as-
signs one processor to each source, and is therefore guaranteed to arrive at the best
solution.

A variant to the paradigm described in the previous paragraph is one in which
all sources need to be monitored simultaneously in order to obtain the best solu-
tion. Here, using a parallel computer with as many processors as there are sources
(namely, n) is the only guarantee of success. This remains true even if — contrary
to the standard assumption articulated at the end of Section 1 — we allowed the
sequential computer to use a processor that is n times faster than each of the proces-
sors on the parallel computer. When n = 2, a colorful illustration of the paradigm
is the pursuit and evasion on a ring example presented in [1]. In this version, an
entity A is in pursuit of another entity B on the circumference of a circle, such
that A and B move at the same speed; clearly, A never catches B. Now, suppose
that two entities C and D are in pursuit of entity B on the circumference of a circle.
Each of C and D moves at 1/k the speed of A (and B), where k is a positive integer
larger than 1. In this case, C and D always catch B. The present paradigm is an-
other instance of inherently parallel problems in which it is the parallelism offered
by the parallel computer that matters, rather than its speed [18]. Do other com-
putational paradigms exist in which it is possible for parallel computers to obtain
better solutions to computational problems than sequential ones?

It may be interesting to conclude by going back full circle and returning to the
starting point of this discussion, namely, speedup. Suppose that, for a given problem,
the best (possible, or known) sequential algorithm runs in time T1. Further, let some
parallel algorithm using p processors run in time Tp when solving the same problem.
Then, in this case, speedup is defined as T1/Tp. In every one of the examples
discovered so far, in which a parallel computer with n processors provides a better
solution than one obtained sequentially, the ratio of the sequential running time to
the parallel running time has been at best linear in n. Thus,

1. In Section 3, an n-processor parallel computer obtains the exact maximum of
the sequence xj

1, x
j
2, . . ., x

j
n, and requires on the order of n time units. Had no

real-time deadlines been imposed, the same computation would have required
on the order of n time units sequentially.

2. Similarly, in Section 4, an n-processor parallel computer encrypts each of w data
blocks using n iterations of an encryption function. This requires on the order
of w + n time units. The same computation (assuming no real-time deadlines
are imposed) would have required on the order of wn time units sequentially.

3. The algorithm of Section 5 solves real-time numerical problem using an n-
processor parallel computer. If w input sets S are received, the number of
time units required is n(n + 2) + (w − 1)(n + 2). In the absence of real-time
deadlines, the same computation requires on the order of wn2 time units.

By contrast, the improvement in the quality of the solution in each case is superlinear

Parallel Real-Time Computation: Sometimes Quantity Means Quality 483

in n. Recent work, however, has demonstrated that superlinear speedups are indeed
possible, particularly in the real-time environment [1, 2, 9, 14, 15, 16, 45, 46, 47]. It is
therefore tempting to ask: Can a superlinear speedup and a superlinear improvement
in quality be achieved simultaneously? Would a model of parallel computation more
powerful than the one used in this paper be required?

REFERENCES

[1] Akl, S. G.: Parallel Computation: Models and Methods. Prentice-Hall, Upper Sad-
dle River, New Jersey, 1997.

[2] Akl, S. G.: Secure File Transfer: A Computational Analog to the Furniture Moving
Paradigm. Proceedings of the Conference on Parallel and Distributed Computing and

Systems, Cambridge, Massachusetts, November 1999, pp. 227–233.

[3] Akl, S. G.: Nonlinearity, Maximization, and Parallel Real-Time Computation. Pro-
ceedings of the Twelfth Conference on Parallel and Distributed Computing and Sys-
tems, Las Vegas, Nevada, November 2000, pp. 31–36.

[4] Akl, S. G.: The Design of Efficient Parallel Algorithms. In Handbook on Parallel
and Distributed Processing, J. Blazewicz, K. Ecker, B. Plateau, and D. Trystram,
Eds., Springer Verlag, Berlin, 2000, pp. 13–91.

[5] Akl, S. G.—Barnard, D. T.—Doran, R. J.: Design, Analysis and Implemen-
tation of a Parallel Tree Search Algorithm. IEEE Transactions on Machine Analysis
and Artificial Intelligence, Vol. 4, 1982, No. 2, 1982, pp. 192–203.

[6] Akl, S. G.—Bruda, S. D.: Parallel Real-Time Optimization: Beyond Speedup.
Parallel Processing Letters, Vol. 9, 1999, No. 4, pp. 499–509.

[7] Akl, S. G.—Bruda, S. D.: Parallel Real-Time Cryptography: Beyond Speedup II.

Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications, Las Vegas, Nevada, June 2000, pp. 1283–1289.

[8] Akl, S. G.—Bruda, S. D.: Parallel Real-Time Numerical Computation: Beyond
Speedup III. International Journal of Computers and their Applications, Special Issue
on High Performance Computing Systems, Vol. 7, 2000, No. 1, pp. 31–38.

[9] Akl, S. G.—Fava Lindon, L.: Paradigms Admitting Superunitary Behaviour
in Parallel Computation. Parallel Algorithms and Applications, Vol. 11, 1997,
pp. 129–153.

[10] Bestavros, A.—Fay-Wolfe, V. Eds.: Real-Time Database and Information Sys-
tems. Kluwer Academic Publishers, Boston, 1997.

[11] Boxer, L.—Miller, R.: Dynamic Computational Geometry on Meshes and Hy-
percubes. Journal of Supercomputing, Vol. 3, 1989, pp. 161–191.

[12] Boxer, L.—Miller, R.: Parallel Dynamic Computational Geometry. Journal of

New Generation Computer Systems, Vol. 2, 1989, No. 3, pp. 227–246.

[13] Brassard, G.—Bratley, P.: Algorithmics: Theory and Practice. Prentice Hall,
Englewood Cliffs, New Jersey, 1998.

484 S. G. Akl

[14] Bruda, S. D.—Akl, S. G.: On the Data-Accumulating Paradigm. Proceedings of

the Fourth International Conference on Computer Science and Informatics, Research
Triangle Park, North Carolina, October 1998, pp. 150–153.

[15] Bruda, S. D.—Akl, S. G.: The Characterization of Data-Accumulating Algo-
rithms. Proceedings of the International Parallel Processing Symposium, San Juan,
Puerto Rico, April 1999, pp. 2–6.

[16] Bruda, S. D.—Akl, S. G.: A Case Study in Real-Time Parallel Computation:
Correcting Algorithms, to Appear. In Journal of Parallel and Distributed Computing.

[17] Bruda, S. D.—Akl, S. G.: Towards a Meaningful Formal Definition of Real-Time
Computations. Proceedings of the Fifteenth International Conference on Computers
and Their Applications, New Orleans, Louisiana, March 2000, pp. 274–279.

[18] Bruda, S. D.—Akl, S. G.: On the Necessity of Formal Models for Real-Time
Parallel Computations. Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications, Las Vegas, Nevada, June 2000,
pp. 1291–1297.

[19] Casti, J.: Complexification: Explaining a Paradoxical World through the Science of

Surprise, HarperCollins, New York, 1994.

[20] Chaudhuri, P.: Finding and Updating Depth First Spanning Trees of Acyclic Di-
graphs in Parallel. The Computer Journal, Vol. 33, 1990, pp. 247–251.

[21] Chaudhuri, P.: Parallel Algorithms: Design and Analysis. Prentice Hall, Sydney,
Australia, 1992.

[22] Chaudhuri, P.: Parallel Incremental Algorithms for Analyzing Activity Networks.
Parallel Algorithms and Applications, Vol. 13, 1998, No. 2, pp. 153–165.

[23] Chin, F. Y.—Houck, D.: Algorithms for Updating Minimum Spanning Trees.
Journal of Computer and System Sciences, Vol. 16, 1978, pp. 333–344.

[24] Cohen, J.—Stewart, I.: The Collapse of Chaos: Discovering Simplicity in a Com-
plex World. Viking, New York, 1994.

[25] Cormen, T. H.—Leiserson, C. E.—Rivest, R. L.: Introduction to Algorithms.
McGraw-Hill, New York, 1990.

[26] Coveny, P.—Highfield, R.: Frontiers of Complexity: The Search for Order in
a Chaotic World. Fawcett Columbine, New York, 1995.

[27] Even, S.—Shiloach, Y.: An On-Line Edge Deletion Problem. Journal of the ACM,
Vol. 28, 1982, pp. 1–4.

[28] Frederickson, G.: Data Structures for On-Line Updating of Minimum Spanning
Trees. Proceedings of the ACM Symposium on Theory of Computing, Boston, Mas-

sachusetts, April 1983, pp. 252–257.

[29] Gerald, C. F.: Applied Numerical Analysis. Addison Wesley, Reading, Mas-
sachusetts, 1978.

[30] Gleick, J.: Chaos: Making a New Science. Penguin Books, New York, 1987.

[31] Greenlaw, R.—Hoover, H. J.—Ruzzo, W. L.: Limits to Parallel Computation.
Oxford University Press, New York, 1995.

[32] Harel, D.: Algorithmics: The Spirit of Computing. Addison Wesley, Reading, Mas-
sachusetts, 1987.

Parallel Real-Time Computation: Sometimes Quantity Means Quality 485

[33] Havill, J. T.—Mao, W.: On-Line Algorithms for Hybrid Flow Shop Scheduling.

Proceedings of the Fourth International Conference on Computer Science and Infor-
matics, Research Triangle Park, North Carolina, October 1998, pp. 134–137.

[34] Horgan, J.: The End of Science. Broadway Books, New York, 1996.

[35] Ibaraki, T.—Katoh, N.: On-Line Computation of Transitive Closure Graphs.
Information Processing Letters, Vol. 16, 1983, pp. 95–97.

[36] Irani, S.—Karlin, A. R.: Online Computation. In: D. S. Hochbaum, Ed., Ap-
proximation Algorithms for NP-Hard Problem, International Thomson Publishing,
Boston, Massachusetts, 1997, pp. 521–564.

[37] JáJá, J.: An Introduction to Parallel Algorithms. Addison Wesley, Reading, Mas-
sachusetts, 1992.

[38] Jung, H.—Mehlhorn, K.: Parallel Algorithms for Computing Maximal Indepen-
dent Sets in Trees and for Updating Minimum Spanning Trees. Information Processing

Letters, Vol. 27, 1988, pp. 227–236.

[39] King, J. T.: Introduction to Numerical Computation. McGraw-Hill, New York,
1984.

[40] Knuth, D. E.: The Art of Computer Programming, Vol. 1, Fundamental Algo-
rithms. Addison-Wesley, Reading, Massachusetts, 1975.

[41] Lawler, E. L.: Combinatorial Optimization: Networks and Matroids. Holt, Rine-
hart&Winston, New York, 1976.

[42] Lawson, H. W.: Parallel Processing in Industrial Real-Time Applications. Prentice
Hall, Englewood Cliffs, New Jersey, 1992.

[43] Levy, S.: Artificial Life: A Report from the Frontier Where Computers Meet Bio-
logy. Vintage, New York, 1992.

[44] Lewin, R.: Complexity: Life at the Edge of Chaos. Macmillan, New York, 1992.

[45] Luccio, F.—Pagli, L.: The p-Shovelers Problem (Computing with Time-Varying

Data). Proceedings of the Fourth Symposium on Parallel and Distributed Computing,
Arlington, Texas, December 1992, pp. 188–193.

[46] Luccio, F.—Pagli, L.: Computing with Time-Varying Data: Sequential Comple-
xity and Parallel Speed-Up. Theory of Computing Systems, Vol. 31, 1998, No. 1,
pp. 5–26.

[47] Luccio, F.—Pagli, L.—Pucci, G.: Three Non Conventional Paradigms of Parallel
Computation. Lecture Notes in Computer Science, 678, 1992, pp. 166–175.

[48] Menezes, A. J.—van Oorschot, P. C.—Vanstone, S. A.: Handbook of Ap-
plied Cryptography. CRC Press, Boca Raton, Florida, 1996.

[49] Miltersen, P. B.—Subramanian, S.—Vitter, J. S.—Tamassia, R.: Comple-
xity Models for Incremental Computation. Theoretical computer Science, 130, 1994,
pp. 203–236.

[50] Newborn, M. M.: Kasparov Versus Deep Blue: Computer Chess Comes of Age.
Springer-Verlag, New York, 1996.

[51] Ortega, J. M.: Numerical Analysis. Academic Press, New York, 1972.

[52] Papadimitriou, C. H.—Steiglitz, K.: Combinatorial Optimization: Algorithms
and Complexity. Prentice Hall, Englewood Cliffs, New Jersey, 1982.

486 S. G. Akl

[53] Pawagi, S.: A Parallel Algorithm for Multiple Updates of Minimum Spanning Trees.

Proceedings of the International Conference on Parallel Processing, St. Charles, Illi-
nois, August 1989, Vol. III, pp. 9–15.

[54] Pawagi, S.—Ramakrishnan, I. V.: An O(log n) Algorithm for Parallel Update of

Minimum Spanning Trees. Information Processing Letters, Vol. 22, 1986, pp. 223–229.

[55] Ralston, A.—Rabinowitz, P.: A First Course in Numerical Analysis. McGraw-
Hill, New York, 1978.

[56] Rawlins, G. J. E.: Compared to What? An Introduction to the Analysis of Algo-
rithms. W. H. Freeman, New York, 1992.

[57] Reif, J. H.: Synthesis of Parallel Algorithms. Morgan Kaufmann, San Mateo, Cali-
fornia, 1993.

[58] Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in
C. John Wiley&Sons, New York, 1995.

[59] Sherlekar, D. D.—Pawagi, S.—Ramakrishnan, I. V.: O(1) Parallel Time
Incremental Graph Algorithms. Lecture Notes in Computer Science, 206, 1985,
pp. 477–493.

[60] Simmons, G. J.: Contemporary Cryptology: The Science of Information Integrity.
IEEE Press, Piscataway, New Jersey, 1992.

[61] Smith, J. R.: The Design and Analysis of Parallel Algorithms. Oxford University
Press, New York, 1993.

[62] Spira, P. M.—Pan, A.: On Finding and Updating Spanning Trees and Shortest
Paths. SIAM Journal on Computing, Vol. 4, 1975, No. 3, pp. 375–380.

[63] Stewart, G. W.: Introduction to Matrix Computations. Academic Press, New
York, 1973.

[64] Stinson, D. R.: Cryptography: Theory and Practice. CRC Press, Boca Raton,
Florida, 1996.

[65] Thorin, M.: Real-Time Transaction Processing. Macmillan, London, 1992.

[66] Tsin, Y. H.: On Handling Vertex Deletion in Updating Minimum Spanning Trees.
Information Processing Letters, 27, 1988, pp. 167–168.

[67] Varman, P.—Doshi, K.: A Parallel Vertex Insertion Algorithm for Minimum Span-
ning Trees. Lecture Notes in Computer Science, 226, 1986, pp. 424–433.

[68] Waldrop, M. M.: Complexity: The Emerging Science at the Edge of Order and
Chaos. Simon and Schuster, New York, 1992.

Parallel Real-Time Computation: Sometimes Quantity Means Quality 487

Selim G. Akl is a professor of computing at Queen’s Uni-

versity, Kingston, Ontario, Canada. His research interests are
in parallel computation. He is author of Parallel Sorting Al-
gorithms (Academic Press, 1985), The Design and Analysis of
Parallel Algorithms (Prentice Hall, 1989), and Parallel Com-
putation: Models and Methods (Prentice Hall, 1997). He is
also a co-author of Parallel Computational Geometry (Prentice
Hall, 1992), and an editor of Computational Geometry (Else-
vier), Parallel Processing Letters (World Scientific Publishing),
and Parallel Algorithms and Applications (Gordon and Breach).

