
Computing and Informatics, Vol. 21, 2002, 333–345

THE DESKTOP GRID ENVIRONMENT ENABLER

Giovanni Aloisio, Massimo Cafaro, Daniele Lezzi

High Performance Computing Center
University of Lecce, Italy
e-mail: {giovanni.aloisio, massimo.cafaro, daniele.lezzi}@unile.it

Revised manuscript received 8 November 2002

Abstract. This paper describes our Desktop Gr id Environment Enabler (DE-
GREE), a set of Web Services that provides advanced capabilities for grid com-
puting. DEGREE services are based both on the Globus Toolkit and the Grid
Resource Broker, a grid portal developed at the University of Lecce. Trusted users
can develop innovative, grid-aware applications that seamlessly access computa-
tional resources and services exploiting our Web Services independently of platform
and programming language.

Keywords: Grid Computing, Web Services, Open Grid Services Architecture,
Globus Toolkit

1 INTRODUCTION

The grid computing paradigm [1] emerged recently as a new field distinguished
from traditional distributed computing because of its focus on large-scale resource
sharing and innovative high-performance applications. The grid infrastructure ties
together a number of Virtual Organizations (VO) [2], that reflect dynamic collec-
tions of individuals, institutions and computational resources. Flexible, secure and
coordinated resource sharing between VOs requires solving a number of challenging
issues like authentication/authorization, resource discovery/management, access to
remote data etc.

The Globus Toolkit [3] addresses the need for core grid services, and has gained
wide acceptance woldwide, so that it is deployed at multiple organizations/insti-
tutions as the middleware of choice for grid computing and many scientific ende-
vours rely on it. Leveraging the Globus Toolkit we built the Grid Resource Broker



334 G. Aloisio, M. Cafaro, D. Lezzi

(GRB) [4, 5], a grid portal providing advanced Globus services that trusted users
can access using a web browser.

In this paper we describe how GRB functionalities will be made available to our
users first in the context of the Web Services framework, and subsequently in the
context of the recently proposed Open Grid Services Architecture (OGSA) [6, 7].
The paper is organized as follows. Section 2 describes the Web Services framework [8]
on which OGSA is based, and Section 3 presents OGSA. A description of the software
infrastructure developed for our DEGREE Services is given is Section 4. Finally,
Section 5 briefly describes the DEGREE services we are going to provide. We
conclude the paper in Section 6.

2 WEB SERVICES

The Internet and the Web allow people to publish documents easily; such documents
can be accessed regardless of geographic location and require just a browser to
be visualized. Recently, the number of available services on the Web has grown
considerably, and the users can access commercial, public and e-government services.

Currently, the focus on the usage of such services has been shifted from people
to software applications. The business world is increasingly demanding automation
of procedures, flexibility and agility to deploy and provide on the web solutions
to customers, partners, suppliers and distributors. Often, the driving force is the
time-to-market pressure that need to be faced. Moreover, integration of services
is required both for B2B (Business to Business) and EAI (Enterprise Application
Integration).

Switching from people to software applications in the Web Services framework
is made possible by the convergence of two key technologies: the Web, with its
well known and accepted standard protocols for universal communication, and Ser-
vice-Oriented computing where data and business logic is exposed through a pro-
grammable interface (e.g. CORBA, RMI, RPC). Thus, Web Services are accessed
through the HTTP/HTTPS protocols and utilize XML (Extensible Markup Lan-
guage) for data exchange. This in turn implies that Web Services are independent
of platform, programming language, tool and network infrastructure.

Cross-platform integration becomes easy, because applications are converted to
loosely coupled services, accessible using both synchronous and asynchronous com-
munication. These services can be assembled and composed in such a way to foster
the reuse of existing back-end infrastructures. The Web Services architecture, as
shown in Figure 1, is based on the following core technologies:

• XML

• SOAP (Simple Object Access Protocol)

• WSDL (Web Services Description Language)

• UDDI (Universal Description, Discovery and Integration)



The Desktop Grid Environment Enabler 335

Fig. 1. Web Services Architecture

AWeb Service itself that can be accessed by a service consumer can be though as
a service provider ; it is worth noting here that the same service can be simultaneously
both a provider and a consumer, if it needs to access another service to serve its
request. The interaction among the Web Services components exploit the UDDI
registry as follows.

The service provider defines a reference to its Web Service using WSDL. The
WSDL document is published into the UDDI registry, so that a service consumer
can search the registry and retrieve the WSDL reference to the Web Service. The
service consumer, using the information stored inside the WSDL document, contacts
the Web Service and issues a service request.

The XML messaging between service consumer and provider exploits the SOAP
protocol that defines two different kind of interactions: RPC and Document-Orien-
ted. The former works exactly as the standard CORBA and EJB middleware: the
client requests a service and synchronously waits for service completion. The latter
asynchronously starts a service and returns immediately without waiting for service
completion.

The typical scenario depicted here is based on document publishing (WSDL
reference), searching for a service and binding to the service provider. Publish-



336 G. Aloisio, M. Cafaro, D. Lezzi

ing, searching and binding in the Web Services Framework harness a set of stan-
dard, layered protocols as shown in Figure 2. The first three levels of the stack
going bottom-up provide the basis to implement a web service, i.e., the network,
an XML based protocol for message exchange and a description of the service.
The next levels in the hierarchy provide mechanisms for document publication,
searching for a service and for handling a flow of interactions among web services.

Fig. 2. Web Services Framework layers

The network layer provides core protocols that can be used to access a service:
HTTP, HTTPS and others, including FTP and IIOP. The XML messaging layer
is based on the de facto standard SOAP. Promoted jointly by IBM and Microsoft,
SOAP defines messages as composed of three parts: envelope, header and body.
The envelope defines message contents, how to process the message and optionals
encoding rules needed to serialize the contents. The message header can include
information about the kind of interaction requested (RPC or Document-Oriented),
and the body contains the actual data or the document to be sent and optional rules
about the data format.

The SOAP protocol is used as follows:



The Desktop Grid Environment Enabler 337

1. The service consumer assembles a SOAP message that invokes the service pro-
vider and passes it to the underlying SOAP infrastructure which, using the
network infrastructure, actually sends the message;

2. The network delivers the message to the service provider; the message is con-
verted automatically from XML to a valid implementation that invokes the
service using the encoding rules specified in the message itself;

3. The service provider processes the incoming request and creates a SOAP reply
message containing the results; as before, the message is handed to the SOAP
infrastructure that using the network sends the message back to the service
consumer;

4. Finally, the service consumer receives the SOAP reply message, which is auto-
matically converted from XML to a valid implementation, so that results can
be immediately used by the application.

SOAP provides automatic marshalling/unmarshalling of the arguments, like
RPC. The interaction described here is the classic request/response; however, other
mechanisms are available, including publish/subscribe, push and one-way messaging.
The service description layer provides the WSDL language used to describe how to
invoke a service; the WSDL document actually decouples the service consumer from
the provider, being the only shared knowledge needed to serve a request.

WSDL is an XML grammar that describes how to contact a Web Service; it
defines the messages to/from the Web Service, logical collection of messages known
as port type, and how a given port type is bound to a particular wire protocol. The
port type represents the actual interface for accessing the web service: it defines
a set of permissible operations, related parameters and the input/output messages.
The binding maps a port type to a specific protocol using a specific set of encoding
rules. Finally a service is a set of ports that implement port types.

The service publication and discovery layers allow service providers to register a
reference and service consumer to search for such a reference. We will see in Section 3
that UDDI in OGSA is replaced by WSIL (Web Services Inspection Language).
In the Web Services framework, the UDDI registry gets populated with service
descriptions (called businessServices), grouped by business categories. The business
societies (called businessEntities) sign up as providers of the services registered
during the population phase and the registry assigns an identifier for each service
and society. The societies can now query the registry to retrieve the information as
needed. The next section introduces OGSA and discusses how it differs from the
Web Services framework.

3 THE OPEN GRID SERVICES ARCHITECTURE

In the previous vision of the grid the attention was focused on the protocols needed
to provide interoperability among VO components. OGSA now shifts the attention
to services as follows: the grid becomes an extensible set of Grid Services that



338 G. Aloisio, M. Cafaro, D. Lezzi

may be aggregated to provide new capabilities. Grid services, as envisioned, retain
several features of the Web Services framework; for instance it is highly desirable to
retain service description and discovery, and binding of service descriptions to wire
protocols.

OGSA thus leverages WSDL and SOAP, but gives its own definition of a Grid
service, which is “a (potentially transient) stateful service instance supporting re-
liable and secure invocation (when required), lifetime management, notification,
policy management, credential management, and virtualization” [7]. The definition
clearly states the need for transient services in the grid environment besides per-
sistent services as provided by the Web Services framework; this entails the need
for interfaces able to manage service lifetime, policies and credentials, and to pro-
vide support for notification. Virtualization of resources is a natural consequence
of the adoption of Service-Oriented computing: computational resources, storage,
networks, applications, archives etc. are all presented as Grid Services.

OGSA ties together Web Services and the Globus Toolkit; in particular the
following Globus components are part of OGSA:

• GRAM (Globus Resource Allocation and Management);

• MDS (Metadata Directory Service);

• GSI (Globus Security Infrastructure).

We have seen that in the Web Services framework UDDI is the standard adopted
for service discovery and publication; in OGSA these functionalities are provided
by WSIL. Service consumers locate service descriptions published by service pro-
viders through WSIL: service descriptions are usually URLs pointing to WSDL
documents, however a service description can also point to an entry stored inside
an UDDI registry. Links to other WSIL documents are common; sometimes we
will find links pointing to an UDDI entry. A service provider using WSIL simply
creates a WSIL document and makes it accessible over the network. OGSA specifies
a number of interfaces, but here we recall the following:

• factory;

• mapper;

• registry.

The factory interface allows for creation of new grid service instances, in par-
ticular reliable creation with once and only once semantic. A Grid Service Handle
(GSH) is returned: this is a globally unique identifier (a URL) based on the name
of a home mapper service. The mapper interface is in charge of converting the GSH
to a Grid Service Reference (GSR), i.e., the WSDL document actually needed to
invoke the service. The registry interface returns a WSIL document containing the
GSHs of a set of Grid services.

Other interfaces provide support for lifetime management, discovery, notification
and authorization. It is worth noting here that the discovery interface differs from



The Desktop Grid Environment Enabler 339

the registry interface as follows: it provides support for querying a Grid Service
instance to retrieve specific service information.

4 DEGREE INFRASTRUCTURE

In this section we briefly review the software components that belong to our DE-
GREE architecture. As shown in Figure 3, we have a layered architecture. The
highest level represents a user’s application. This software must be written using
the WSDL references to our services; these references can be found either by search-
ing our UDDI registry or using WSIL, as specified in OGSA.

In order to simplify SOAP based software development, we exploit the gSOAP
toolkit [9], a flexible set of compiler tools that provide C/C++ language binding for
the development of SOAP Web Services and clients. The gSOAP toolkit was chosen
because it is freely available, and in our opinion, well suited for the conversion of
legacy application using SOAP because its main feature is a transparent SOAP API.
As a matter of fact, gSOAP hides irrelevant SOAP-specific details from the user
through the use of compiler technology. The gSOAP stub and skeleton compiler can
be used to automatically map native and user-defined C and C++ data types to
semantically equivalent SOAP data types and vice-versa. SOAP interoperability is
thus achieved without explicit knowledge of SOAP details.

We have collaborated with Robert Van Engelen, which is the principal inves-
tigator and developer of the gSOAP project, to add HTTPS and cookie support
to gSOAP; moreover we have also implemented Globus GSI support (available as
a gSOAP plugin [15]). This is a first step toward an OGSA compliant gSOAP
toolkit, since OGSA security is based on GSI. Currently, the OGSA specification is
not yet finalized and it is undergoing a revision process in the context of the Global
Grid Forum [10]. As a result, we have decided to rewrite GRB as a set of Web
Services for the time being, and we plan to convert GRB services in Grid Services
as envisioned by OGSA when the specification will be finalized.

The next layer in the architecture is our set of DEGREE services. These are
written using two libraries we developed for GRB [11, 12], to provide high level
Globus services, and the gSOAP toolkit. Security is addressed using HTTPS and
cookies to authenticate trusted users; the GSI enabled plugin for gSOAP will be used
to provide authentication using X.509v3 certificates and delegation of credentials.
The next layer in our architecture includes Globus and third-party services (e.g.
a MyProxy [13] server for user’s authentication/authorization that will not be needed
once GSI support will be added) exploited as capability providers. Finally, the last
layer includes the computational resources available to a user on the grid.

5 DEGREE SERVICES

Currently, all of the services are implemented as stand-alone, multi-threaded servers
with support for SSL. DEGREE provides the following services:



340 G. Aloisio, M. Cafaro, D. Lezzi

Fig. 3. GRB Architecture



The Desktop Grid Environment Enabler 341

• Authentication/Authorization,

• User’s profile management,

• Job submission,

• Job monitoring,

• High performance file transfer,

• Access to Globus information services.

Authentication and authorization is based on X509v3 certificates and the
MyProxy package. Before using DEGREE services, users are required to create re-
stricted credentials and store them as a proxy on our MyProxy server. The DEGREE
Authentication/Authorization service then retrieves the proxy using the user’s sup-
plied pass phrase and grants or denies the access to other services checking the
distinguished name of the proxy issuer.

The users pass phrase for the credentials stored inside the MyProxy server is sent
from the client application using HTTPS to prevent network sniffing, and cookies
are used to establish and maintain session information. This avoids the need to
authenticate a user each time she accesses a service. The users proxy is then used
for single sign-on to the computational grid. The GRB cookie stores the following
information [14]:

• Users login name;

• Timestamp;

• Expiration date;

• Message Authentication Code (MAC) for the previous plaintext data.

We encrypt the cookie using SSL for additional security; moreover we utilize
ephemeral cookies, i.e., our cookie is not stored on the users file system (persistent
cookies) but in the client application memory. When the user exits the application,
the ephemeral cookie automatically disappears. This prevents the possibility that
an error in the way the client application or the user handles the cookie file makes
it accessible over the Internet.

DEGREE services related to the user’s profile management allow the user to
modify her user’s profile to insert, edit or delete computational resources that the
user can access on the grid. Globus version 2.0 must be installed on each machine
that the user wants to use. For each machine the user also enters the path to her
shell and the node/hour cost. The former is used to take advantage of the user’s
environment on the remote machine, and the latter is used by GRB to schedule the
user’s submitted jobs.

Job submission services provide the user with the capability of submitting:

• Interactive jobs;

• Batch jobs;

• Parameter sweep jobs



342 G. Aloisio, M. Cafaro, D. Lezzi

• Data Flow jobs.

Interactive jobs run for a small amount of time and return their output to the
user upon completion. This feature allows to execute simple commands, e.g. to
list the files in the user’s home directory, to remove a file, etc. The client needs
to provide as input the machine where the job will be executed, the executable
pathname, command-line arguments (if any), the machine and the pathname that
refers to the user’s input for the job. Only the first two parameters are required
to execute the job, the others are optional. The executable pathname needs to
be an absolute one only when the executable must be transferred from a machine
that differs from the one chosen for execution. If the executable is available on the
same machine where it will be runned, then GRB takes automatically advantage of
the information stored in the user’s profile to access the user’s environment on the
remote machine, so that if the executable can be located using the PATH variable,
the user can simply refer to it by its name. If the executable pathname starts with
a tilde, GRB tries to locate the executable starting from the user’s home directory.
If the executable and/or the input (can be a single file or a directory) must be
transferred, GRB starts automatically a third-party file transfer, before running the
job.

Batch jobs are submitted for execution, and GRB returns a job identifier that
can be used later to infer the job status, exploiting the GRB job monitoring service.
In addition to the parameters needed to execute an interactive job, the user can also
specify a computational resource and a pathname that refers to the job output. GRB
automatically stages the executable and/or the input, submits the job for execution
and returns the job identifier, and finally stages the output upon job completion.

Parameter sweep jobs are also commonly referred to as High Throughput jobs.
Here, the user needs to submit the same executable on different machines, each time
running with a different input. This is required for parameter studies. The param-
eters needed for a parameter sweep job include the ones for a batch job submission,
the number of machines to be used for execution and their hostnames, and the num-
ber of input files. GRB submits the job, staging executable, input and output if
needed, and returns the job identifier.

Data Flow jobs are described by a Directed Acyclic Graph (DAG). The vertices
represent the jobs to be executed (each one can be though of as a batch job), and
the edges model precedence constraints. GRB schedules all of the jobs for execution
computing a topological sort of the input graph.

The high performance file transfer service provides the user with the capability
of starting a parallel third-party file transfer. The service can transfer single files or
directories and requires as input only the source and destination machines and the
pathnames where to find/store the files. Since the transfer time can be high, the
service returns to the user a file transfer job identifier. This can be used to verify
later the file transfer status.

The job monitoring service allows the user to check the status of a batch, pa-
rameter sweep or data flow job. The input for the job tracking service is a job



The Desktop Grid Environment Enabler 343

identifier, and the output includes all of the information related to the job submit-
ted. Currently the service returns date and time of job submission, the executable
pathname, command-line arguments, information about executable, input and out-
put staging, the Globus job identifier (that differs from GRB job identifier) and the
job status (running, pending, suspended, failed or done). This service can also be
used to check the status of a scheduled high performance file transfer.

Finally, DEGREE also allows to query a Globus GRIS server to get the feature
of a specific machine, or a Globus GIIS to find a set of machines that match user’s
criteria. Information services are a key component in the highly dynamic grid en-
vironment, for advanced information discovery and monitoring. The GRIS service
needs as input parameters only a machine hostname, while the GIIS service also
needs a set of criteria (CPU speed, model, amount of memory, etc.). Queries to the
Globus information services exploit the LDAP protocol and, if needed, SASL for
security reasons.

6 CONCLUSIONS

In this paper we have described DEGREE, a set of Web Services for advanced grid
computing, based on the Grid Resource Broker. DEGREE services allow developers
of grid-aware applications to take advantage of the underlying Globus grid infras-
tructure transparently. No explicit knowledge of the Globus Toolkit is required,
services can be composed as needed and provide a friendly interface to high-level
Globus services. We plan to extend DEGREE capabilities to support advanced
scheduling algorithms. Moreover, we have started work on the gSOAP toolkit to
make it OGSA compliant, by adding Globus GSI support. This is a first step toward
our final goal, the evolution of our Grid Resource Broker as a set of Grid Services.

REFERENCES

[1] Foster, I.—Kesselman, C.: The Grid. Blueprint for a new computing infrastruc-
ture. Morgan Kaufmann, San Francisco, 1999.

[2] Foster, I.—Kesselman, C.—Tuecke, S.: The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International Journal Supercomputer Applications,
Vol. 15, 2001, No. 3, pp. 200–222.

[3] Foster, I.—Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit.
Intl J. Supercomputer Applications, Vol. 11, 1997, No. 2, pp. 115–128.

[4] Aloisio G.—Cafaro, M.—Blasi, E.—Epicoco, I.: The Grid Resource Broker,
a Ubiquitous Grid Computing Framework. To appear in Journal of Scientific Pro-
gramming.

[5] Aloisio G.—Cafaro, M.: Web-Based Access to the Grid Using the Grid Resource
Broker Portal. To appear in Concurrency, Practice and Experience.

[6] Foster, I.—Kesselman, C.—Nick, J.-Tuecke, S.: Grid Services for Distributed
System Integration. Computer, Vol. 35, 2002, No. 6, pp. 37–46.



344 G. Aloisio, M. Cafaro, D. Lezzi

[7] Foster, I.—Kesselman, C.—Nick, J.—Tuecke, S.: The Physiology of the

Grid: An Open Grid Services Architecture for Distributed System Integration. Tech-
nical Report for the Globus project. http://www.globus.org/research/papers/
ogsa.pdf.

[8] Kreger, H.: Web Services Conceptual Architecture WSCA 1.0. IBM, 2001.

[9] van Engelen, R. A.—Gallivan, K. A.: The gSOAP Toolkit for Web Services
and Peer-To-Peer Computing Networks. Proceedings of IEEE CCGrid Conference,

Berlin, pp. 128–135, May 2002.

[10] Global Grid Forum: http://www.gridforum.org.

[11] Aloisio G.—Cafaro, M.—Epicoco, I.: Early Experiences with the GridFTP
Protocol Using the GRB-GSIFTP Library. To appear in Future Generation Comput-
ing Systems, special issue on Grid Computing, Elsevier.

[12] Aloisio G.—Cafaro, M.—Blasi, E.—Depaolis, L.—Epicoco, I.: The GRB
Library: Grid Programming with Globus in C. Proceedings of HPCN Europe 2001,
Amsterdam, Netherlands, Lecture Notes in Computer Science, Springer-Verlag, 2110,
pp. 133–140.

[13] Novotny, J.—Tuecke, S.—Welch, V.: An Online Credential Repository for
the Grid: MyProxy. Proceedings of the Tenth International Symposium on High
Performance Distributed Computing (HPDC-10), 2001, IEEE Press.

[14] Fu, K.—Sit, E.—Smith, K.—Feamster, N.: Dos and Don’ts of Client Authen-
tication on the Web. Proceedings of the 10th USENIX Security Symposium, Wash-
ington, D.C., 2001.

[15] Cafaro, M.—Lezzi, D.—van Engelen, R. A.: The GSI plugin for gSOAP.
http://sara.unile.it/∼cafaro/reg.html.

Giovanni Aloisio is Full Professor in Computer Engineering
at the Engineering Faculty of the University of Lecce and Di-

rector of the High Performance Computing Center (HPCC) of
the Department of Innovation Engineering& ISUFI/University
of Lecce. His research covers High Performance, Distributed
and Grid Computing. He was the co-founder of the European
Grid Forum (Egrid) now merged into the Global Grid Forum
(GGF). He is a member of IEEE Computer Society and holds
a permanent visitor position at CACR Caltech. Contact him at
giovanni.aloisio@unile.it.



The Desktop Grid Environment Enabler 345

Massimo Cafaro is an Assistant Professor at the Depart-

ment of Innovation Engineering of the University of Lecce and
a member of the ISUFI/High Performance Computing Center
(ISUFI/HPCC). His research covers High Performance, Distri-
buted and Grid Computing. He is also interested in computer
security. Since the beginning of 1998 he is involved in grid
projects. He is currently working in the NPACI metasystem
trust area to build grid-enabled applications and the Grid Re-
source Broker, a web portal to computational grids. He received
a degree in computer science from the University of Salerno and

a Ph.D. in Computer Science from the University of Bari. He is a member of IEEE and
of IEEE Computer Society, and holds a visitor position at CACR Caltech. Contact him
at massimo.cafaro@unile.it.

Daniele Lezzi is currently a member of the ISUFI/High
Performance Computing Center (ISUFI/HPCC). He received
a degree in computer engineering from the University of Lecce,
Italy. His research interests include high performance comput-
ing, distributed and grid computing. He’s developing a Web

Services based grid portal called GRB exploiting the Globus
Toolkit package. He’s involved in the European Gridlab project,
a Grid Application Toolkit and Testbed. Contact him at
daniele.lezzi@unile.it.


