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1 INTRODUCTION

Scheduling computational tasks on a given set of processors is a key issue for high-
performance computing. Although a large number of scheduling heuristics have
been presented in the literature, most of them target only homogeneous resources.
However, future computing systems, such as the computational grid, are most likely
to be widely distributed and strongly heterogeneous. In this paper, we consider the
impact of heterogeneity on the design and analysis of static scheduling techniques:
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how to enhance these techniques to efficiently address cluster and grid comput-
ing?

We begin with a brief review of scheduling heuristics designed to minimize the
total schedule length, or makespan (Section 2). Next we sketch the divisible load
approach in Section 3. We proceed to steady-state scheduling in Section 4. Finally,
we discuss the limitations of static scheduling approaches in Section 5, and we state
some concluding remarks in Section 6.

2 MINIMUM MAKESPAN SCHEDULING

2.1 Framework

The traditional objective of scheduling algorithms is the following: given a task
graph and a set of computing resources, find a mapping of the tasks onto the pro-
cessors, and order the execution of the tasks so that: (i) task precedence constraints
are satisfied; (ii) resource constraints are satisfied; and (ii) a minimum schedule
length is provided.

Task graph scheduling is usually studied using the so-called macro-dataflow

model, which is widely used in the scheduling literature: see the survey papers [31,
36, 17, 21] and the references therein. This model was introduced for homogeneous
processors, and has been (straightforwardly) extended for heterogeneous computing
resources. In a word, there is a limited number of computing resources, or proces-
sors, to execute the tasks. Communication delays are taken into account as follows:
let task T be a predecessor of task T ′ in the task graph; if both tasks are assigned
to the same processor, no communication overhead is paid, the execution of T ′ can
start right at the end of the execution of T ; on the contrary, if T and T ′ are as-
signed to two different processors Pi and Pj , a communication delay is paid. More
precisely, if Pi finishes the execution of T at time-step t, then Pj cannot start the
execution of T ′ before time-step t + comm(T, T ′, Pi, Pj), where comm(T, T ′, Pi, Pj)
is the communication delay, which depends upon both tasks T and T ′ and both pro-
cessors Pi and Pj . Because memory accesses are typically one order of magnitude
cheaper than inter-processor communications, it makes good sense to neglect them
when T and T ′ are assigned to the same processor.

However, the major flaw of the macro-dataflow model is that communication
resources are not limited. First, a processor can send (or receive) any number
of messages in parallel, hence an unlimited number of communication ports is as-
sumed (this explains the name macro-dataflow for the model). Second, the number
of messages that can simultaneously circulate between processors is not bounded,
hence an unlimited number of communications can simultaneously occur on a given
link. In other words, the communication network is assumed to be contention-
free, which of course is not realistic as soon as the processor number exceeds a few
units.
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2.2 Communication-Aware Models from the Literature

Communication-aware models restrict the use of communication links in various
manners. In the model proposed by Sinnen and Sousa [39, 38, 40], the underlying
communication network is no longer fully-connected. There are a limited number
of communication links, and each processor is provided with a routing table which
specifies the links to be used to communicate with another processor (hence the
routing is fully static). The major modification is that at most one message can
circulate on one link at a given time-step, so that contention for communication
resources is taken into account.

Similarly, Hollermann et al. [25] and Hsu et al. [26] target networks of proces-
sors and introduce the following model: each processor can either send or receive
a message at a given time-step (bidirectional communication is not possible); also,
there is a fixed latency between the initiation of the communication by the sender
and the beginning of the reception by the receiver. This model is rather close to the
one-port model discussed below.

Several other papers impose restrictions on the communication resources, e.g.
Tan et al. [42], Orduna et al. [33] and Roig et al. [34].

2.3 The One-Port Model

In this model, at a given time-step, any processor can communicate with at most an-
other processor in both directions: sending to and receiving from another processor.
The model also assumes communication/computation overlap. Note that several
communications can occur in parallel, provided that they involve disjoint pairs of
sending/receiving processors, which nicely models switches like Myrinet that can
implement permutations [19], or even multiplexed bus architectures [27].

Several variants could be considered: no communication/computation overlap,
uni-directional communications, or even a combination of both restrictions. But
the full-overlap one-port model seems closer to the actual capabilities of modern
processors, and we strongly advocate its use when targeting heterogeneous clusters.

v1 v2 v3 v4 v5 v6

v0

Fig. 1. Task graph for the example: all weights (nodes and communications) are equal
to 1.
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Serializing communications performed by the processors has a dramatic impact
on the scheduling makespan. Consider the simple fork graph represented in Figure 1.
Assume five same-speed processors and a fully homogeneous network, and suppose
that task weights and communication costs are all equal to 1. In the macro-dataflow
model, v0 and the first two children v1 and v2 are assigned to processor P0. One
of the remaining children v3, v4, v5 and v6 is assigned to each remaining processor.
P0 executes task v0 at time-step 0; then P0 can perform all the four communications
in parallel at time-step 1, while it executes v1. The execution of v2, v3, v4, v5
and v6 begins at time-step 2. The total makespan is equal to 3. In the one-port
model, the same allocation of tasks to processors leads to a makespan at least 6:
1 for the parent task, 4 for the four messages to be sent sequentially, and 1 for the
last task to be executed. One optimal solution is to assign three children tasks to P0

and one remaining child task to a distinct processor (which makes one processor
useless), for a makespan equal to 5. It is clear that communications from the parent
node to the children has become the bottleneck. Of course, we could use larger task
graphs and greater communication costs to come up with arbitrarily large differences
in the makespans.

The one-port model turns out to be computationally even more difficult than the
macro-dataflow model: scheduling a simple fork graph with an unlimited number
of homogeneous processors is NP-hard [6]. Note that this problem has polynomial
complexity in the macro-dataflow model [24]; we have to resort to fork-join graphs
to get NP-completeness in the macro-dataflow model [17].

2.4 Heuristics

An impressive list of scheduling heuristics has been proposed in the literature for
the macro-dataflow model with a limited number of homogeneous processors. More
recently, several heuristics have been introduced to deal with different-speed proces-
sors, including the minimum Partial Completion Time static priority (PCT) heuris-
tic [29], the Best Imaginary Level (BIL) heuristic [32], the Critical Path on a Pro-

cessor (CPOP) heuristic [43], the Generalized Dynamic Level (GDL) heuristic [37]
and the Heterogeneous Earliest Finish Time (HEFT) heuristic [43]. See [12, 13] for
a survey and a comparison. Among these heuristics, HEFT is a natural extension of
list-scheduling heuristics to cope with heterogeneous resources. More in particular,
HEFT builds upon the old Modified Critical Path heuristic [23] and use bottom
levels to assign priorities to tasks.

HEFT has been extended in [6] to fulfill the constraints of the one-port model.
Furthermore, a new heuristic was introduced in [6], whose main characteristic is
a better load-balancing at each decision step. This is achieved by considering a chunk
of several ready tasks rather than a single one; the idea is to allocate to each processor
a number of the tasks in the chunk whose overall processing time is proportional to
its computing power.

Replacing the macro-dataflow by the one-port model is a first step towards
designing realistic scheduling heuristics for heterogeneous clusters. However, such
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heuristics strongly depend upon an accurate knowledge of the whole task graph
before execution, and they tend to require a precise estimation of the task and com-
munication weights, which may limit their applicability to very regular problems
arising from dense linear algebra, digital signal processing or multi-media applica-
tions.

3 DIVISIBLE LOAD SCHEDULING

3.1 Framework

The concept of divisible jobs has been introduced and widely studied by Robertazzi
et al. [5, 41, 16, 11]. A divisible job is a job that can be arbitrarily split in a linear
fashion among any number of processors. This corresponds to a perfectly parallel
job: any sub-task can itself be processed in parallel, and on any number of processors.
Such applications include the processing of large data files, Kalman filtering, and
are a perfect testbed to understand the impact of realistic communication models,
since the solution is trivial under the macro-dataflow model.

Robertazzi et al. studied the case of a bus (with homogeneous communication
costs, heterogeneous computation costs and at most one communication at a given
time step on the bus) in [41], the case of a tree of processors (with homogeneous
communication and computation costs, using the one-port model) in [5], and the case
of a star (heterogeneous communication and computation costs, one-port model)
in [16]. In this section, we present their main results for bus and star architectures.

The notations used through this section are the following:

• αi denotes the fraction of workload assigned to processor Pi, ∀i (∑i αi = 1).

• wi denotes the inverse of the processing speed of processor Pi, normalized so
that αiwi denotes the time required by Pi to process its load fraction.

• ci denotes the inverse of the communicating speed between processor Pi and
the originating processor, normalized so that αici denotes the time required to
transmit to Pi its load fraction. In the case of a bus, ci = c, ∀i.

• Ti denotes the time elapsed before Pi begins its processing. Thus, Tf = maxi(Ti+
αiwi) denotes the overall computational time.

3.2 Case of a Bus

In general, two main problems are to be solved for dispatching divisible jobs. The
first problem is to determine in which order the work should be sent to the different
processors. Since the bus communication medium can handle only one communi-
cation at a given time step, the solution is as depicted in Figure 2. Once the com-
munication order has been determined, the second problem is to decide how much
work should be allocated to each processor Pi. The final objective is to minimize
the makespan.
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Fig. 2. Pattern of a solution for dispatching the load of a divisible job

In the case of a bus, the solution is surprisingly simple. First, one can prove that
all the processors must finish their work at the same time (i.e. Ti + αiwi = Tf , ∀i).
Indeed, otherwise, some work could be transferred from a busy processor to an idle
one in order to reduce Tf . Thus, the following system of equation holds,

{

Tf − Ti = αiwi, ∀1 ≤ i ≤ n

Ti+1 − Ti = αi+1c ∀1 ≤ i ≤ n− 1

if data is sent successively to P2, . . . , Pn. Closed forms can be obtained for both
the αi’s and Tf . These closed forms are rather complicated, although the method
for obtaining them is elementary, and we refer the reader to [41] to find the actual
algebraic expressions. The surprising and interesting point is that the overall com-
putational time Tf does not depend upon the order chosen for sending data to the
different processors, so that the ordering P2, . . . , Pn is in fact optimal.

Therefore, closed forms for the optimal solution can be derived when the com-
munication medium is a bus.

3.3 Case of a Star

The case of an heterogeneous star is discussed in [16]. The solution can again be
depicted as in Figure 2, with proper ci values for each processor Pi (so that αic is
changed into αici). The results are less satisfying than in the case of the bus. Indeed,
the main known result is that if data is sent to the different processors in a given
order (say, again, P2, . . . , Pn), then closed forms can be obtained for both the αi’s
and Tf . Unfortunately, the formal proof of the result stating that all the processors
must finish their work at the same time does not hold in the heterogeneous case.
Moreover, Tf strongly depends on the communication ordering, and to the best of
our knowledge, the optimal communication ordering is not known.

As a conclusion, we point out that even with this very simple application model,
on a very common architecture (a star of heterogeneous processors), deriving optimal
solutions is very difficult. One interesting problem would consist in considering
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both initial and back communications, so as to model an application where results
have to be sent back to the originating processor. The problem is open, but we
expect it to be challenging in this case, since two permutations (for initial and back
communications) are to be determined.

3.4 Multi-Round Algorithms

The master processor can distribute the chunks to the workers in a single round, as
above, so that there will be a single communication between the master and each
worker. This is the simplest situation, but for large workloads, the single round
approach is not efficient, because of the idle time incurred by the last processors to
receive their chunks. To minimize the makespan, i.e. the total execution time, the
master will send the chunks to the workers in multiple rounds: the communications
will be shorter (less latency) and pipelined, and the workers will be able to compute
the current chunk while receiving data for the next one.

To remain realistic, the model must be enhanced, and communication latencies
should be included (otherwise the optimal strategy would be to use an infinite num-
ber of rounds). For each communication of size L between the master and a worker,
say Pi, we pay a latency gi and a linear term L.ci. Latencies play an important
role in current architectures [19], and have been introduced for divisible loads by
Drozdowski [20]. They now are widely used in the literature.

Deriving an efficient multi-round solution becomes a challenging problem: how
many rounds should be scheduled? what is the best size of the chunks for each round?
Intuitively, the size of the chunks should be small in the first rounds, so as to start all
the workers as soon as possible. Then the chunk size should increase to a steady-state
value, to be determined so as to optimize the usage of the total available bandwidth
of the network. Finally the chunk size should be decreased while reaching the end
of the computation. In Chapter 10 of [11], there is no quantified value provided for
the number of rounds to be used. Recently, Altilar and Paker [1, 2], and Yang and
Casanova [45] have introduced multi-round algorithms and analytically expressed
their performance. We refer the reader to [7] for a bibliographical survey of multi-
round algorithms, and for the design of an asymptotically optimal algorithm.

4 STEADY-STATE SCHEDULING

In this section we deal with large problems. In this context an absolute minimization
of the total execution time is not really required. Indeed, deriving asymptotically
optimal schedules is more than enough to ensure an efficient use of the architectural
resources. In a word, the idea to reach asymptotic optimality is to relax the problem:
(i) neglect the initialization and clean-up phases, and concentrate on steady-state
operation; (ii) derive an optimal steady-state scheduling using linear programming;
(iii) prove the asymptotic optimality of the associated schedule. We give two exam-
ples of this approach below: packet routing, and mixed task/data parallelism.
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4.1 Packet Routing

The packet routing problem is the following: let G = (V, E) be a non-oriented graph
modeling the target architectural platform, and consider a set of same-size packets
to be routed through the network. Each packet is characterized by a source node
(where it initially resides) and a destination node (where it must be located in the
end). For each pair of nodes (vk, vl) in G, let nkl be the number of packets to be
routed from vk to vl. Let

P = {(k, l) ∈ V 2, nkl 6= 0}.

Bertsimas and Gamarnik [10] introduce a scheduling algorithm which is asymptoti-
cally optimal when n =

∑

(k,l)∈P nkl → +∞. So to speak, temporal constraints have
been removed in this algorithm: it is never written than a packet must have reached
a node before leaving it.

Consider an arbitrary scheduling and let xkl
ij be the number of packets circulating

from vk to vl and using the edge (the communication link) between vi and vj , ∀(i, j) ∈
E, ∀(k, l) ∈ P . The time needed to circulate a packet on any edge is assumed to be
constant (equal to 1), but at most one packet can circulate on one edge at a given
time-step. We obtain the following relaxed linear program:

Minimize Cmax,

subject to






































(1)
∑

i,(k,i)∈E xkl
ki = nkl ∀(k, l) ∈ P

(2)
∑

i,(i,l)∈E xkl
il = nkl ∀(k, l) ∈ P

(3)
∑

j,(j,i)∈E xkl
ji =

∑

r,(i,r)∈E xkl
ir ∀(k, l) ∈ P , ∀i 6= k, l

(4) Ci,j =
∑

(k,l)∈P xkl
ij ∀(i, j) ∈ E

(5) Ci,j ≤ Cmax, ∀(i, j) ∈ E

(6) xkl
ij ≥ 0, Ci,j ≥ 0, ∀(k, l) ∈ P , (i, j) ∈ E

The first two equations state that the number of packets of type (k, l) that leave
node k and reach node l is nkl. Equation (3) is the conservation law (conservation
of the number of packets) at node i. Equation (4) defines the total occupation time
of edge (i, j), and equation (5) states that all these occupation times minor the
makespan Cmax. Note that all temporal constraints have been left out, hence the
name relaxed.

The solution of this linear program with O(|E||P |) rational variables and
O(|V ||P | + |E|) constraints can be obtained in polynomial time. The complexity
does not depend on n, the total number of packets, which justifies its use when n is
large. Now, to construct the actual scheduling, we split the execution into phases,
and we reproduce a “rounded” version of the relaxed solution during each phases.
Let Ω be the length of a phase (to be determined later) and let

aklij =

⌊

xkl
ijΩ

Cmax

⌋

, ∀(k, l) ∈ P , (i, j) ∈ E



Static Scheduling Strategies for Heterogeneous Systems 421

be the number of packets (rounded from below) of type (k, l) which circulate on
the edge (i, j) during Ω time-steps in the relaxed problem. The algorithm proposed
in [10] is the following:

Input Compute the optimal value Cmax from the relaxed linear program.

Step 1 During each phase [lΩ, (l+ 1)Ω], where l = 0, . . . , ⌈Cmax

Ω
⌉ − 1, and for each

edge (i, j) ∈ E, circulate on the edge as many packets of type (k, l) as available
in node i at time lΩ, but no more than aklij .

Step 2 At time-step T = ⌈Cmax

Ω
⌉Ω, all the packets that have not been fully routed

are handled sequentially.

It can be proven that at time-step

(

Cmax

Ω
+ 1

)

Ω + |E||V |
(

Cmax|P |
Ω

+ |P | + Ω

)

all the packets have successfully been routed. The proof sketch is as follows. First
the previous scheduling is shown feasible (during each phase, all the packets can
indeed be transmitted). Next, at the end of Step 1, whose length is not larger than
(Cmax

Ω
+1)Ω, the number of packets that have not reached their destination is bounded

by |E|(Cmax|P |
Ω

+|P |+Ω). These packets are routed sequentially on a path of length at

most |V |, hence the duration of Step 2 is not larger than |E||V |(Cmax|P |
Ω

+ |P |+Ω). If
we choose Ω of the order of

√
Cmax, the makespan of the schedule is Cmax+O(

√
Cmax),

hence the asymptotic optimality.

4.2 Mixed Task/Data Parallelism

We consider here applications that consist of a suite of identical, independent prob-
lems to be solved. In turn, each problem consists of a set of tasks, with dependences
between these tasks. A typical example is the repeated execution of the same algo-
rithm on several distinct data samples: the task graph of the algorithm is executed
several times, one for each problem instance. The application is executed using the
master-slave paradigm: one particular processor holds (or produces) all the data
that is initially needed. Tasks (or more precisely data files associated to them) are
distributed to, and executed by, the other processors (the slaves). Note that differ-
ent copies of the same task type (corresponding to different problem instances) may
well be executed by different processors.

The objective is to derive an efficient scheme for the distribution and the schedul-
ing of the tasks to the processors. We use the following notations (see Figure 3):

• The task graph is G = (T, C). Each vertex Tk represents a task type to be
executed, and each edge (Tk → Tl) represents a communication between two
tasks, and is weighted by datak,l, the volume of communication to be exchanged
(think of each edge as been associated to a file of type (k, l) to by sent from Tk

to Tl).
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Fig. 3. The application/architecture framework

• The platform graph is G′ = (P, L). Vertices represent computing resources and
edges represent communication links. Each edge in L is weighted ci,j, the time
needed to transfer one data unit on the link from Pi to Pj .

• The time needed to execute (any copy of) task Tk on processor Pi is wi,k. The
time needed to communicate one file of type (k, l) (related to the edge from
Tk to Tl in the task graph) along the communication link from Pi to Pj in the
platform graph is ci,j × datak,l.

• We use the full-overlap one-port model of Section 2.3: at a given time-step,
a processor can simultaneously execute a task, receive a message (at most one)
and send a message (at most one).

This model is quite general, and deriving a minimum makespan schedule is
hopeless. As in Section 4.1, we introduce a relaxed problem, which characterizes the
optimal steady-state operation, i.e. the maximal throughput (total number of tasks
executed per time-unit). We use the following notations:

• s(Pi, Pj , Tk, Tl) is the fraction of time spent each time-unit by Pi to send to Pj

data involved by the edge (Tk, Tl) of the task graph. Similarly, Sent(Pi, Pj, Tk, Tl)
is the number of data files of this type sent along the edge (Pi, Pj) per time-unit,
with s(Pi, Pj, Tk, Tl) = Sent(Pi, Pj, Tk, Tl) ∗ datak,l ∗ ci,j .

• α(Pi, Tk) is the fraction of time spent each time-unit by Pi to compute tasks of
type Tk. Similarly, Cons(Pi, Tk) is the number of tasks of this type consumed
by Pi each time-unit, with α(Pi, Tk) = Cons(Pi, Tk) ∗ wi, k.

• Finally, we add two fictitious tasks Tbegin and Tend to the task graph. Tbegin is the
predecessor of all input tasks in G (tasks without any predecessor in G). The
execution time of Tbegin by any processor is equal to 0, and the communication
volume along any edge from Tbegin to an input task is also 0. Similarly, Tend is
the successor of all output tasks in G.
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Let Pms be the master processor, and let n(Pi) be the set of the neighbors of
Pi in the platform graph. The following linear program summarizes the equations
governing the activity of the processors and of the communication links within one
time-unit, as well as conservation laws for each task file and each data file type:

Maximize
∑

i Cons(Pi, Tend),
subject to

(1) ∀i, ∀k, 0 ≤ α(Pi, Tk) ≤ 1
(2) ∀i, j, k, l, 0 ≤ s(Pi, Pj, Tk, Tl) ≤ 1
(3) ∀i, j, k, l, s(Pi, Pj, Tk, Tl) = Sent(Pi, Pj, Tk, Tl) ∗ datak,l ∗ ci,j
(4) ∀i, k, α(Pi, Tk) = Cons(Pi, Tk) ∗ wi, k
(5) ∀i, ∑

Pj∈n(Pi)

∑

(k,l)∈C s(Pi, Pj, Tk, Tl) ≤ 1

(6) ∀i, ∑

Pj∈n(Pi)

∑

(k,l)∈C s(Pj , Pi, Tk, Tl) ≤ 1
(7) ∀i, ∑

Tk∈T α(Pi, Tk) ≤ 1
(8) ∀i, Cons(Pi, Tbegin) = 0
(9) ∀i, j, k, s(Pi, Pj, Tk, Tend) = 0
(10) ∀i, k, l, ∑

Pj∈n(Pi) Sent(Pj, Pi, Tk, Tl) + Cons(Pi, Tk) =
∑

Pj∈n(Pi) Sent(Pi, Pj, Tk, Tl) + Cons(Pi, Tl)

(11) ∀i, k 6= begin, l,
∑

Pj∈n(Pms) Sent(Pj , Pms, Tk, Tl) + Cons(Pms, Tk) =
∑

Pj∈n(Pms)(Sent(Pms, Pj, Tk, Tl) + Cons(Pms, Tl)

The objective function is equal to the number of copies of task Tend executed
per time-step. Because of the dependences, the availability of a copy of Tend means
that the whole task graph instance has been executed. Equation (5) states that the
fraction of time spent by Pi to send tasks cannot exceed 1; sending is sequential
in the one-port model, hence the summation on the neighbors. Equation (6) is the
counterpart for receptions, as well as equation (7) for computations. Equation (10),
and its variant equation (11) for the master processor, is the most important: con-
sider a given processor Pi, and a given edge (Tk, Tl) in the task graph. During each
time unit, Pi receives from its neighbors a given number of files of type (Tk, Tl).
Processor Pi itself executes some tasks Tk, thereby generating as many new files of
type (Tk, Tl). What does happen to these files? Some are sent to the neighbors
of Pi, and some are consumed by Pi to execute tasks of type Tl: we derive equa-
tion (10), which really applies to the steady-state operation. At the beginning of
the operation of the platform, only input tasks are available to be forwarded. Then
some computations take place, and tasks of other types are generated. At the end
of this initialization phase, we enter the steady-state: during each time-period in
steady-state, each processor can simultaneously perform some computations, and
send/receive some other tasks. This is why equation (10) is sufficient, we do not
have to detail which operation is performed at which time-step.

Finally, we have derived a linear program whose complexity is polynomial in |T |,
|C|, |P | and |L|, and does not depend upon the number of problems (task graphs) to
deal with. In this case, deriving a practical scheduling is easier than in Section 4.1.
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Having computed the solution of the linear program, we derive the time period T by
computing the least common multiple of all denominators of the rational variables:
we obtain an interval of length T during which the number of tasks executed and
transmitted is an integer constant. Using a sequential initialization phase to feed
the processors, and a sequential clean-up phase to process the very last tasks, we
derive an asymptotically optimal schedule. More precisely, the number of tasks
executed by this schedule is optimal, up to a constant that only depends upon the
task graph and platform graph, not upon the total number of tasks. See [4, 8] for
further details.

5 LIMITATIONS OF STATIC SCHEDULING

We have surveyed three useful techniques when targeting heterogeneous clusters:

• Replacing the macro-dataflowmodel by the one-port model is a first step towards
designing realistic scheduling heuristics.

• Assuming a perfectly divisible load greatly simplifies the task allocation problem.

• Dealing with steady-state operation instead of makespan minimization is a nice
way to circumvent the computational complexity of scheduling problems while
deriving efficient (often asympotically optimal) scheduling algorithms.

However, several problems remain to be addressed. We classify them into the
following two categories: acquiring a good knowledge of the platform graph, and
running extensive experiments or simulations.

5.1 Knowledge of the Platform Graph

Is it realistic to assume that all the information concerning the task graph is available
from the very beginning of the scheduling? For some applications, tasks are only
known on-line, as the computation progresses. But there are regular problems (e.g. a
two-dimensional FFT, or a dense LU solver) for which the whole division into tasks,
and the dependences between the tasks, is known a priori. For such problems, the
structure of the task graph (nodes and edges) only depends upon the application,
not upon the target platform. Problems arise from the weights, i.e. the estimation
of the execution times and of the communication times. For instance, critical path
scheduling relies on a precise knowledge of all these parameters to assign the next
ready task to the adequate computing resource. Even the steady-state scheduling
of independent tasks requires some static knowledge of the architecture.

A classical answer to this problem is borrowed from a simple paradigm used in
dynamic strategies, namely “use the past to predict the future”, i.e. use the currently
observed speed of computation of each machine and of each communication link
to decide for the next distribution of work [9]. There are too many parameters to
accurately predict the actual speed of a machine for a given program, even assuming
that the machine load will remain the same throughout the computation [3, 18]. The
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situation is even worse for communication links, because of unpredictable contention
problems.

When deploying an application on a platform, the idea is thus to divide the
scheduling into phases. During each phase, all the machine and network parameters
are collected and histogrammed, using a tool like NWS [44]. This information will
then guide the scheduling decisions for the next phase.

Moving from heterogeneous clusters to computational grids will cause further
problems. Even discovering the characteristics of the surrounding computing re-
sources may prove a difficult task, despite the availability of tools like IDMaps and
Global Network Positioning [22, 30] or Effective Network View [35]. Still, even in
the favorable case where the target platform graph has been well identified and is
relatively stable, schedulers face two major difficulties: (i) providing an accurate
modeling of the hierarchical structure of the platform and (ii) designing scheduling
algorithms that are well-suited to this hierarchical structure. Overcoming these two
difficulties will be a challenging task for the forthcoming years.

5.2 Experiments Versus Simulations

Real experiments on the target platform are often involved to test or to compare
heuristics. However, on a distributed heterogeneous platform, such experiments are
technically difficult to drive, because of the genuine instability of the platform. For
example, wide-area links are often shared with Internet traffic from other applica-
tions, and their performance is not as constant and reliable as the one of a dedicated
cluster of workstations. In a word, it is almost impossible to guarantee that a plat-
form which is not dedicated to the experiment, will remain exactly the same between
two tests, thereby forbidding any meaningful comparison.

Simulations are then used to replace real experiments, so as to ensure the re-
producibility of measured data. Being faster than real experiments, simulations will
enable to test the algorithms in a variety of conditions. A key issue is the possibility
to run the simulations against a realistic environment. The main idea of trace-
based scheduling is to record the platform parameters today, and to simulate the
algorithms tomorrow, against the recorded data: even though it is not the current
load of the platform, it is realistic, because it represents a fair summary of what
happened previously.

A good example of a trace-based simulation tool is SimGrid [14], a toolkit pro-
viding a set of core abstractions and functionalities that can be used to easily build
simulators for specific application domains and/or computing environment topolo-
gies. SimGrid performs event-driven simulation. The most important component
of the simulation process is the resource modeling. The current implementation as-
sumes that resources have two performance characteristics: latency (time in seconds
to access the resource) and service rate (number of work units performed per time
unit). SimGrid provides mechanisms to model performance characteristics either
as constants or from traces. This means that the latency and service rate of each
resource can be modeled by a vector of time-stamped values, or trace. Traces allow
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the simulation of arbitrary performance fluctuations such as the ones observable
for real resources. In essence, traces are used to account for potential background
load on resources that are time-shared with other applications/users. SimGrid has
been successfully used to evaluate scheduling strategies for parameter sweep appli-
cations over the computational grid [15]. An extension of SimGrid to decentralized
schedulers and realistic platforms is currently under development [28].

6 CONCLUSION

The difficulty of scheduling for clusters and grids should not be underestimated.
Data decomposition, task allocation and load balancing were known to be difficult
problems in the context of classical parallel architectures. They become extremely
difficult in the context of heterogeneous clusters, not to mention grid computing
platforms. If the platform is not stable enough, or if it evolves too fast, dynamic
schedulers are the only option. Otherwise, there is always the opportunity to inject
some static knowledge into dynamic schedulers. Future work will decide whether
this opportunity is a niche (the pessimistic answer) or whether it encompasses a wide
range of applications (the expected answer!).
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