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Abstract. This paper introduces an unsupervised learning algorithm for optimal
training of competitive neural networks. The learning rule of this algorithm is de-
rived from the minimization of a new objective criterion using the gradient descent
technique. Its learning rate and competition difficulty are dynamically adjusted
throughout iterations. Numerical results that illustrate the performance of this
algorithm in unsupervised pattern classification and image compression are also
presented, discussed, and compared to those provided by other well-known algo-
rithms for several examples of real test data.
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1 INTRODUCTION

Artificial neural networks (ANNs) are heuristic models that try to simulate the
human brain capabilities of learning from examples and generalizing the learned
skills to new and unseen examples. They have been proved effective in solving many
hard real-world problems in different application domains, especially in the field of
pattern classification and recognition [1.2].

In practice, ANNs are used as alternatives to traditional deterministic models in
order to find, in a reasonable amount of time, approximate yet satisfying solutions
to difficult real-world problems that are out of reach for these conventional models.
Such problems are often encountered in a variety of fields and applications including
medicine, telecommunications, economics, engineering, environment, etc. [1.2].
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Technically speaking, the design of an artificial neural networks-based solution
to a given practical problem requires three main steps. The first step is the choice
of a suitable architecture for the ANN, i.e., the number of neurons or processing
elements to use and a suitable way for connecting them in order to build the network.
The second step is the choice of an appropriate algorithm for training the network,
i.e., a way for adjusting the synaptic weights of the physical connections between
pairs of neurons. The third step is the choice of a good learning dataset X =
{x1, x2, . . . , xn} ⊂ Rp, i.e., a set of sample examples that can be used during the
learning phase as input data for the training algorithm, where each example k is
represented by a p-dimensionnal object vector xk and each component xik ∈ R is
the numerical value of one of its p features.

Based on the information carried by each of these sample examples, the training
process consists in repeatedly adjusting the synaptic weights of the chosen architec-
ture so that the resulting network could be able to recognize, without errors, new
and unseen examples when it will be used in the generalization phase. If the ele-
ments of X are labeled, i.e., if the original class of each learning example is a priori
known, the learning process can be performed in supervised mode. Otherwise we
say that the learning process is unsupervised [2].

The most known ANNs are undoubtedly multilayer perceptrons (MLP), which
are commonly used in real-world problems for which sufficient amounts of labeled
data are available. MLP use a simple architecture with an input layer, an output
layer, and one or more hidden layers. They can be efficiently trained using the
ubiquitous back-propagation algorithm, which is an optimization procedure aimed
at minimizing the global misclassification errors of the network [3.4].

In this paper, we are rather interested in the application of ANN in situations
where large amounts of data examples are available but are not labeled, particularly
in the field of unsupervised pattern classification and recognition. ANNs that can
be used in these situations are called competitive neural networks (CNNs), and their
general architecture is depicted in Figure 1.

According to this architecture a CNN can be seen as a particular type of MLP
which contains only two layers. The first layer is an input layer whose role is to
receive signals representing input data. It contains p neurons, where p is the dimen-
sionality of the data space. The second layer is an output layer, aka competitive
layer, whose number of neurons, c, is equal to the number of classes or homogeneous
groups supposed present in the learning data base. However, as its learning data
are not labeled, a CNN cannot be trained in supervised mode, meaning that the
synaptic weights should not be modified in response to desired outputs but rather
to the inputs. In this context, the adjective “competitive” means that each time
a sample example xk(1 ≤ k ≤ n) is presented to the input layer, the c neurons of the
output layer compete for benefiting from the information carried by this example in
order to adjust their own weights.

Let W = (w1, w2, . . . , wc) ⊂ Rp be the matrix formed by the c × p weights
to be learned, where each vector wj ∈ Rp represents the synaptic weights of the
p connections of an output neuron (1 ≤ j ≤ c); the problem of training the CNN
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Figure 1. General architecture of a CNN

can be posed in terms of finding the best way to exploit the information carried
by the n learning examples in order to find the best value for each of the c × p
synaptic weights. It is a difficult search and optimization problem for which many
algorithms have been proposed in the literature, and which still remains an open
problem [2, 11].

By remarking that each output vector wj of the learning phase can also be
interpreted as a codebook, or prototype or representative, of the jth class (1 ≤ j ≤ c),
CNN can be viewed as prototype generator classifiers. Indeed, what a CNN actually
learns are representatives of the c classes supposed present in the learning dataset.
In the generalization phase, these representatives can be used, for example, in order
to perform the task of recognizing new and unseen examples. A simple way of doing
this is by applying the nearest prototype recognition rule (1-np), which consists in
assigning each new example xk to the class i whose prototype is the nearest one to
the object-vector associated with that example (Figure 1).

During the last two decades, many learning algorithms have been developed for
training CNNs [6, 15]. Based all on the principle of competition, these algorithms
differ mainly in the way they manage this competition, i.e., in the learning rule they
use for adjusting the synaptic weights of the network. These rules range from the
classical winner takes all (WTA) rule, for which at each iteration only one neuron,
the winner, benefits from adjusting its weights to different fuzzy learning rules for
which all neurons are considered as winners, but to different degrees that fix the
extend to which the weights of each neuron should be adjusted [5, 10]. Experimental
studies of several variants of these algorithms showed, however, that no one of them
is robust enough to perform well for different data sets and different application
domains [8, 9].

In this paper, we develop a learning technique for CNN that tries to combine
the advantages of some studied methods whilst avoiding their drawbacks. It is
an optimal technique whose learning rule is based on the minimization of an objective
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criterion. It is also dynamic in that it uses a dynamically adjusted learning rate and
a growing competition difficulty.

Before detailing the proposed method in Section 3, in Section 2 we give a brief
presentation of the principal other methods studied in this work. Numerical results
and discussions will be given in Section 4. Finally, Section 5 contains our conclusion
and some perspectives for future work.

2 CNN TRAINING ALGORITHMS

As we mentioned in the above introduction, many unsupervised learning algorithms
have been proposed in the literature for training CNN with unlabeled data examples.
In the framework of this study, several of these algorithms were studied, programmed
and tested on different examples of test datasets. This section gives a brief descrip-
tion of the principal ones among these algorithms. Further information about each
presented technique can be found in the corresponding references.

2.1 The Learning Vector Quantization (LVQ)

The first algorithm, known in the literature under the name Learning Vector Quan-
tization (LVQ), was proposed by Kohonen in 1989 [12]. LVQ is an unsupervised
learning algorithm aimed at training competitive neural networks. It is based on
the idea of competition in the sense that, at each iteration, the c neurons of the
output layer compete for the input sample and only one neuron, the winner, ben-
efits from the adjustment of its synaptic weights. Hence, for each object vector
xk = {xk1, xk2, . . . , xkp} ∈ Rp presented to the network, we locate the neuron i
whose synaptic weights vector vi = {vi1, vi2, . . . , vip} ∈ Rp minimizes the distance
‖xk − vi‖. This vector is then updated according to the rule

vi,t = vi,t−1 + ηt−1(xk − vi,t−1) (1)

where ηt−1 is the learning rate, whose role is to control the convergence of weights
vectors to class prototypes. Starting from an initial value η0. This learning rate is
adjusted at each iteration t, according to the relation

ηt = η0

(
1− t

ttmax

)
. (2)

This operation is repeated until stabilization of synaptic weights vectors or until
a maximum number of iterations is reached.

This algorithm suffers from some drawbacks such as its sensitivity to the ini-
tialization, the risk of a dominant object that always wins the competition, and
a poor exploitation of the structural information carried by each data example. In-
deed, this information is not limited to the distance between the data example and
the winner but is distributed over the distances to all the c neurons. To overcome
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these drawbacks, several techniques have been proposed in the literature. The ear-
liest technique was a generalization of LVQ known as Generalized Learning Vector
Quantization (GLVQ).

2.2 The Generalized Learning Vector Quantization (GLVQ)

Proposed by Pal in 1993 [5], GLVQ is an optimization procedure that tries to mini-
mize the following criterion

Jk =
c∑
i=1

αki‖xk − vi,t−1‖2 (3)

with

αki =


1 if i = arg min1≤r≤c ‖xk − vr,t−1‖

1∑c

r=1
‖xk−vr,t−1‖2

= 1
D

otherwise.
(4)

This is done by updating the synaptic weights of all neurons of the output layer
according to the rule

vi,t = vi,t−1 + ηt−1
∂Jk
∂vi,t−1

(5)

that is
vi,t = vi,t−1 + ηt−1(xk − vi,t−1)× ψki (6)

with

ψki =


D2−D+‖xk−vi,t−1‖2

D2 if i = arg(min1≤r≤c ‖xk − vr,t−1‖)
‖xk−vi,t−1‖2

D2 otherwise.
(7)

By analyzing the relation (5) we can see that GLVQ allows all output neurons to
be updated and gives the same importance to all non-winners, which can be inconve-
nient. In addition, when D ∈]0, 1[, non-winner neurons will have more importance
than the winner, which is inacceptable. To overcome these drawbacks, different
GLVQ versions have been presented in the literature, with different formulations for
the criterion to minimize and for the D parameter of Equation (4). Among these
GLVQ versions, we mention the revised GLVQ or RGLVQ.

2.3 The Revised Generalized Learning Vector Quantization (RGLVQ)

RGLVQ is an optimal training algorithm for CNN [18], which aims at minimizing
the loss fonction L(xk, vi), defined for each object vector xk of the learning dataset
and each prototype vi by

L(xk, vi) = ‖xk − vi‖2 + ‖xk−vi‖2
D

∑c
r 6=i ‖xk − vr‖2

= 2‖xk − vi‖2 − ‖xk−vi‖
4

D

(8)
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with

D =
c∑
j

‖xk − vj‖2. (9)

According to this method, the winner is the prototype i that verifies

‖xk − vi‖2 ≤ ‖xk − vj‖2, ∀j 6= i (10)

The updating coefficient wr is determined from the gradient of L(xk, vi) as follows:

wr =


1− ‖xk−vi‖

2

D
+ ‖xk−vi‖4

2D2 , r = i

‖xk−vi‖4
2D2 , r 6= i

(11)

Despite the modification it brought to GLVQ, RGLVQ suffers from the same
drawbacks as GLVQ, especially in the choice of an appropriate mathematical ex-
pression for the function D.

Another way to generalize LVQ is by conceiving fuzzy versions inspired by the
Bezdek’s fuzzy c-means algorithm [6, 13]. In what follows, we give a brief description
of the fuzzy c-means algorithm (FCM) and some competitive learning schemes that
represent examples of fuzzy versions of LVQ.

2.4 The Fuzzy C-Means Algorithm (FCM)

FCM is a prototype generator classifier designed as an optimization procedure for
finding the best fuzzy c-partition of the n elements of X [16, 17, 23]. This procedure
tries to minimize the objective function

Jm(U, V,X) =
n∑
k=1

c∑
i=1

(uik)
m‖xk − vi‖2 (12)

where U is the matrix of membership degrees, with uik denoting the membership
degree of the kth object to the ith class; V is the matrix of class prototypes, with vi
representing the ith class prototype; m > 1 is a weighting exponent whose role is to
control the fuzziness degree of candidate partitions during the learning process.

Jm can be interpreted as a fuzzy measure of the global error incurred in repre-
senting the n training vectors by the c prototypes. In 1973, Bezdek proved that in
order for FCM to converge to a local minimum of Jm, i.e., to a sub-optimal solution,
it is necessary to calculate the components of U and V matrices according to the
expressions

uik,t =

 c∑
r=1

(
‖xk − vi,t−1‖2

‖xk − vr,t−1‖2

) 1
m−1

−1 (13)

and

vi,t =

∑n
k=1(uik,t)

mxk∑n
k=1(uik,t)

m
. (14)
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Hence, starting from a randomly chosen matrix of initial prototypes V0 =
{v1.0, v2.0, . . . , vc,0}, if we repeatedly calculate the components of U and V accord-
ing to (13) and (14), the iterative process will converge to a point (U∗, V ∗) where
the c prototypes are stabilized, i.e., a point from which the difference ‖Vt − Vt−1‖
becomes non-significant. ‖Vt − Vt−1‖ is evaluated using the expression

‖Vt − Vt−1‖ = max
1≤i≤c

(
max
1≤j≤p

(
|vij,t−vij,t−1

|
))

. (15)

2.5 Huntsberger and Ajjimarangsee Scheme (HALVQ)

Huntsberger and Ajjimarangsee [7] tried to establish a connection between vector
quantization and fuzzy clustering. They proposed a modified version of LVQ inspired
by the FCM algorithm, which leads to the following expression

vr,t = vr,t−1 +

 c∑
j=1

‖xi − vr, t− 1‖
2

(m−1)

‖xi − vj, t− 1‖
2

(m−1)

2 × (xi − vr,t−1). (16)

with 1 ≤ r ≤ c, 1 ≤ i ≤ n and 1 ≤ t ≤ tmax
However, this hybrid learning scheme lacked theoretical foundations, formal

derivations and clear objectives.

2.6 The Karayiannis Scheme (FGLVQ)

Karayannis et al. [10, 13] proposed another fuzzy version of GLVQ, which consists
in using as weights of prototypes the membership degrees produced in developing
a fuzzy learning rule by applying the gradient descent technique to the criterion Jk
defined by Equation (3).

vr,t = vr,t−1 − αt
∂

∂v

(
c∑

r=1

urk‖xk − vr,t−1‖2
)

(17)

where

urk =

 c∑
j=1

‖xk − vr‖ 2
m−1

‖xk − vj‖
2

m−1

−1 . (18)

Karayiannis et al. said that the use of (17) is difficult to justify mathematically
and its introduction is based only on intuition hoping that some of the robustness of
FCM could be transferred to LVQ by incorporating this relationship. Consequently,
FGLVQ may be subject to the same criticism as HALVQ described above.

2.7 The Fuzzy Learning Vector Quantization (FLVQ)

In an attempt to better exploit the structural information carried by each data ex-
ample, Tsao et al. [6] proposed a variant of LVQ for which all neurons are considered
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as winners but with different degrees. This variant is called Fuzzy Learning Vector
Quantization (FLVQ) and can be viewed as a neural version of FCM. In fact, like
FCM, FLVQ uses the following expressions for calculating membership degrees and
prototypes

uik,t =

 c∑
r=1

(
‖xk − vi,t−1‖2

‖xk − vr,t−1‖2

) 1
m−1

−1 (19)

vi,t =

∑n
k=1 (uik,t)

m xk∑n
k=1 (uik,t)

m (20)

The difference between FCM and FLVQ concerns the m parameter, which is
constant for FCM but variable for FLVQ. Depending on the way m varies throughout
iterations two versions of FLVQ have been developed: FLVQ↓ and FLVQ↑. In
FLVQ↓, m decreases according to the relation

mt = mmax −
t

tmax

(mmax −mmin) (21)

and in FLVQ↑ it increases according to

mt = mmin +
t

tmax

(mmax −mmin) . (22)

In recent years, several improved versions of FLVQ were proposed in the litera-
ture, among which we mention the improved batch fuzzy learning vector quantiza-
tion (IBFLVQ), which has been proposed especially for image compression applica-
tions.

2.8 Improved Batch Fuzzy Learning Vector Quantization (IBFLVQ)

IBFLVQ is an optimization algorithm [14], which aims to find prototypes that op-
timize the objective function

JR(U, V,X) = θt
n∑
k=1

c∑
i=1

uik,t‖xk − vi,t‖2 + (1− θt)
n∑
k=1

c∑
i=1

u2ik,t‖xk − vi,t‖2 (23)

where θ ∈ [0, 1[ is a user defined parameter introduced in order to control the
transition from fuzzy to crisp case. The components of the membership degrees
matrix U = {uik,t}k=1,...,n;i=1,...,c are calculated according to

uik,t =
2 + (card(Tk,t)− 2)θt

2(1− θt)
1∑

vj∈Tk,t

(
‖xk−vi,t‖
‖xk−vj,t‖

)2 − θt
2(1− θt)

(24)

with
Tk,t = {vi,t ∈ Vt : uik,t > 0} (25)
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Those of the prototypes matrix Vt = {vi,t}i=1,...,c are calculated using the expression

vi,t =

∑n
k=1[θtwik,t + (1− θt)(wik,t)2]xk∑n
k=1[θtwik,t + (1− θt)(wik,t)2]

(26)

with
wik,t =

uik,t∑c
i=1 uik,t

, 1 ≤ k ≤ n, 1 ≤ i ≤ c. (27)

Hence, starting from a randomly chosen matrix of initial prototypes V0 =
{v1.0, v2.0, . . . , vc,0}, if we repeatedly calculate the components of U and V according
to Equations (21), (23) and (24), the iterative process will converge to a stabilization
point.

To close this section we note that, in this work, all the 5 techniques presented
above have been coded using C++ language and the resulting software was tested
and compared with the one implementing our technique on several data examples.
The results of these comparisons will be presented and discussed in Section 4.

3 DYNAMIC OPTIMAL TRAINING FOR COMPETITIVE NEURAL
NETWORKS (DOTCNN)

The technique we propose in this work is designed as a fuzzy competitive learning
scheme for training competitive neural networks [22]. It is an optimization proce-
dure, aimed at minimizing an objective criterion that can be interpreted as a new
error measure. The minimization process is performed using the gradient descent
method. It gives rise to a new learning rule, which constitutes the main character-
istics of our method.

3.1 The Objective Criterion

It is very difficult to choose a good objective criterion. This difficulty is mainly
due to the impossibility of describing all desirable features of a good result by the
mean of a unique formula that would be valid for different data structures and
different applications. Our experimental results showed, indeed, that no one of the
objective criterions used in the studied techniques is universally perfect or universally
bad. This means that, in completely unsupervised environment, i.e., in the absence
of any prior information about the actual structure of the data to analyze, we
have no objective way to definitely adopt a specific criterion. Consequently, it
would be better to use a generalized, but simple, expression with more user defined
parameters. That would let the user adjust the algorithmic parameters according
to the specificities of each application. Numerical results presented in this study
confirm the usefulness of this idea.

To develop a new objective criterion, we start from a very simple objective
criterion used to express the error Ecrisp

k,t incurred when we replace each object xk
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with the prototype of the class it belongs to, i.e.

Eclassic
k,t =

c∑
i=1

gik,t−1‖xk − wi,t−1‖2 (28)

with

gik,t−1 =

{
1 if i = arg min1≤i≤c{‖xk − wi,t−1‖}
0 otherwise.

(29)

This criterion is valid in the crisp case where the membership of any object xk to
any class Cj is equal to either 1 or 0 (29).

Since our method is a fuzzy learning scheme, where each object belongs to all
classes with different degrees, it is necessary to provide a fuzzy generalization of
Eclassic
k,t that can be used as an objective criterion. The mathematical expression we

propose for this is

Ek,t =
c∑
i=1

umik,t−1‖xk − wi,t−1‖α (30)

where uik,t−1 denotes the membership degree of xk to the ith class, whose prototype
at iteration t− 1 is wi,t−1. uik,t−1 also represents the synaptic weights vector of the
ith neuron of the output layer; m is a positive parameter adjustable by the user,
which controls the fuzziness of the partition generated by DOTCNN.

Ek,t can be interpreted as a fuzzy measure of the global error incurred in replacing
each input vector xk with its nearest prototype.

To evaluate uik,t−1, we use the following expression

uik,t−1 =
‖xk − wi,t−1‖−α∑c
j=1 ‖xk − wj,t−1‖−α

(31)

where ‖xk−wi,t−1‖ denotes the Euclidean distance between xk and wi,t−1 at iteration
t− 1, i.e.

‖xk − wi,t−1‖ =

√√√√ p∑
q=1

(xkq − wiq,t−1)2 (32)

where α is a user defined parameter whose values are heuristically fixed by the user
such as α ≥ 1.

3.2 The Learning Rule

The learning rule is the protocol that fixes the adjustment ∆wrqk,t that should be
applied to each component wrq,t−1 of each weights vector wr,t−1 of each neuron r at
each iteration t. Its general form is given by the expression

wrq,t = wrq,t−1 + ∆wrqk,t (33)

for r = 1, . . . , c ; q = 1, . . . , p ; and k = 1, . . . , n.
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To calculate ∆wrqk,t, we use the gradient descent method

∆wrqk,t = −ηt
∂Ek,t
∂wrq,t−1

(34)

which gives

∆wrqk,t = −η ∂
∂wrq,t−1

(∑c
i=1 u

m
ik,t−1‖xk − wi,t−1‖α

)
= −ηt

∑c
i=1

(
‖xk − wi,t−1‖α

∂umik,t−1

∂wrq,t−1
+ umik,t−1

∂‖xk−wi,t−1‖α
∂wrq,t−1

)
= −ηt

∑r−1
i=1

(
‖xk − wi,t−1‖α

[
∂umik,t−1

∂wrq,t−1

]
i 6=r

)
− ηt‖xk − wr,t−1‖α

∂umrk,t−1

∂wrq,t−1

−ηt
∑c
i=r+1

(
‖xk − wi,t−1‖α

[
∂umik,t−1

∂wrq,t−1

]
i 6=r

)
− ηtumrk,t−1

∂‖xk−wr,t−1‖α
∂wrq,t−1

(35)
with

[
∂uik,t−1

∂wrq,t−1

]
i 6=r

=

∂

[
‖xk−wi,t−1‖

−α∑c

j=1
‖xk−wj,t−1‖−α

]
i 6=r

∂wrq,t−1
=
−‖xk−wi,t−1‖−α

∂‖xk−wr,t−1‖
−α

∂wrq,t−1(∑c

j=1
‖xk−wj,t−1‖−α

)2

=
−α(xkq−wrq,t−1)‖xk−wr,t−1‖−α−2‖xk−wi,t−1‖−α(∑c

j=1
‖xk−wj,t−1‖−α

)2

(36)

∂urk,t−1

∂wrq,t−1
=

∂

[
‖xk−wr,t−1‖

−α∑c

j=1
‖xk−wj,t−1‖−α

]
∂wrq,t−1

=

∂‖xk−wi,t−1‖
−α

∂wrq,t−1∑c

j=1
‖xk−wj,t−1‖−α

+
−‖xk−wi,t−1‖−α

∂‖xk−wr,t−1‖
−α

∂wrq,t−1(∑c

j=1
‖xk−wj,t−1‖−α

)2

=
−α(xkq−wrq,t−1)‖xk−wr,t−1‖−α−2‖xk−wi,t−1‖−α(∑c

j=1
‖xk−wj,t−1‖−α

)2

+
α(xkq−wrq,t−1)‖xk−wr,t−1‖−α−2∑c

j=1
‖xk−wj,t−1‖−α

(37)

∂‖xk − wr,t−1‖α

∂wrq,t−1
= −α (xkq − wrq) ‖xk − wr,t−1‖α−2. (38)
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Hence

∆wrqk,t = −ηt
∑c
i=1

−α m um−1
ik,t−1(xkq−wrq)‖xk−wr,t−1‖−α−2(∑c

j=1
‖xk−wj,t−1‖−α

)2


−ηt

α m um−1
rk,t−1(xkq−wrq)‖xk−wr,t−1‖−2∑c

j=1
‖xk−wj,t−1‖−α

+ ηtα umrk,t−1 (xk − wrq,t−1) ‖xk − wr,t−1‖α−2

= −ηt
∑c
i=1

(−α m um−1
ik,t−1)‖xk−wr,t−1‖−2‖xk−wr,t−1‖α‖xk−wr,t−1‖−2α(∑c

j=1
‖xk−wj,t−1‖−α

)2

−ηt
α m um−1

rk,t−1(xkq−wrq,t−1)‖xk−wr,t−1‖−2‖xk−wr,t−1‖α‖xk−wr,t−1‖−α∑c

j=1
‖xk−wj,t−1‖−α

+ ηt α m umrk,t−1 (xkq − wrq) ‖xk − wr,t−1‖α−2

= −ηt
∑c
i=1

(
−α m um−1ik,t−1 (xkq − wrq,t−1) ‖xk − wr,t−1‖α−2u2rk,t−1

)
−ηt α m um−1rk,t−1 (xkq − wrq,t−1) ‖xk − wr,t−1‖α−2urk,t−1

+ ηt α umrk,t−1 (xkq − wrq,t−1) ‖xk − wr,t−1‖α−2

= ηt α u2rk,t−1
(xkq−wrq,t−1)
‖xk−wr,t−1‖−α+2

[
(1−m)um−2rk,t−1 +

∑c
i=1m um−1ik,t−1

]
.

(39)

The resulting learning rule can be expressed in the form:

wrq,t = wrq,t−1 + ηt ψrk,t−1 (xkq − wrq) (40)

with

ψrk,t−1 = α u2rk,t−1‖xk − wr,t−1‖α−2
[
(1−m)um−2rk,t−1 +

c∑
i=1

m um−1ik,t−1

]
(41)

where ηt denotes the learning rate at iteration t. This rate decreases during iterations
according to the expression

ηt = ηt−1

(
1− t

tmax

)
. (42)

As to the learning process, it operates as follows: for each training vector xk, we
calculate the c membership degrees {uik,t}i=1,...,c. Neurons qualified to compete are
then selected and all winners benefit from the adjustment of their weight vectors
according to (40) and (41). Qualified neurons are those which verify the condition

uik,t ≥ ζt (43)

where ζt is a measure of the degree of difficulty of the competition at iteration t.
The role of this measure is to control the difficulty of the competition throughout
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iterations in order to dynamically fix the number of winners. For this, ζt is varied
according to the heuristically determined expression

ζt =
(

t

tmax

)β
(44)

where β is a positive parameter adjustable by the user.
Hence, at the beginning of the learning process, ζt=0 = 0, the competition is easy

and all neurons are qualified for competition. However, as iterations continue, the
competition becomes ever harder and few neurons would be qualified. This means
that the proposed learning rule verifies three main conditions:

1. it is optimal because it is based on the minimization of an objective criterion,

2. it is fuzzy because at each iteration many neurons can be considered as winners
and their synaptic weights can be adjusted to different degrees, and

3. it is dynamic because the difficulty of competition varies throughout iterations,
leading to a natural decrease of the number of winners.

A more formal description of this unsupervised learning algorithm is given by the
following pseudo-code:
Given a set of unlabeled data X = {x1, x2, . . . , xn} ∈ Rn×p

Step 1: Chose

• The number of neurons of the output layer, c;

• A maximal number of iterations tmax;

• A tolerable threshold ε > 0 for the variation of the weights matrix between
two consecutive iterations;

Step 2: Initialize

• The counter of iterations t = 0;

• The prototypes matrix W0 = {w1.0, w2.0, . . . , wc,0} ∈ Rc×p;

• The learning rate 0 < η0 < 1;

Step 3: do {

• t = t+ 1;

• Evaluate ηt using (42)

• Evaluate ζ using (44)

• For each xk ∈ X do {
– Calculate uik,t using (11) with 1 ≤ i ≤ c
– Adjust the synaptic weights of all neurons ni that verify (43) using (40)

and (41).

}
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• Evaluate the variation:
‖Wt −Wt−1‖ = max1≤i≤c (max1≤j≤p (|wij,t − wij,t−1|))

} While (‖Wt −Wt−1‖ < ε and t < tmax);

4 NUMERICAL RESULTS AND DISCUSSION

In this section, we present and compare typical examples of numerical results ob-
tained by applying the proposed technique, and the other techniques described in
the previous sections to two kinds of problems: clustering and compression.

4.1 Clustering

A clustering problem can be formulated mathematically as follows: given a set of
n unlabeled feature vectors X = {x1, x2, . . . , xn} ⊂ Rp, where xk ∈ Rp represents
a sample object (1 ≤ k ≤ n ) and xkj ∈ R the numerical value of its jth feature,
find the best way to organize the n objects into c natural groups or clusters such
that objects within each group will be more similar to each other than are objects
belonging to different groups [17, 23, 24, 25].

To illustrate the efficacy of the proposed technique in clustering, in this section
we present the numerical results of its application to a series of well-known real data
sets, which are publicly available on the machine learning repository of the University
of California at Irvine [19]. These examples concern five popular datasets:

1. Bcw: 699 object vectors of 9 components, which are calculated from a scanned
image in relation with breast cancer. The objects described in this dataset are
divided into 2 classes of different sizes. The first class contains 458 samples and
the second 241 samples.

2. Yeast: 1484 amino acid sequences of 8 components. These sequences are divided
into 10 classes of 463, 429, 244, 163, 51, 44, 37, 30, 20 and 5 samples, respectively.
Yeast dataset is used to test systems conceived for cellular localization sites of
proteins.

3. Spect: 267 object vectors of 22 components, which are calculated from images
of SPECT (Single Proton Emission Computed Tomography) concerning cardiac
analysis. The objects of this dataset are divided into 2 classes with 212 and 55
samples.

4. Wine: 178 object vectors of 13 components, which represent a set of measures
in relation to 3 varieties of Italian wine, with 59, 79, and 48 samples per variety,
respectively.

5. FGlass: comes from forensic testing of 214 glass fragments of 13 components.
The objects described in this dataset are divided into 3 classes of different sizes,
with 87, 76 and 51 samples per class, respectively.
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All these datasets are used as bases of unlabeled examples to train our unsuper-
vised neural network. The name tags of the objects described in these datasets are
used to evaluate the misclassification error rate, ec, according to the expression

ec =
n∗

n
(45)

with n∗ being the number of misclassified objects and n the total number of objects
in the dataset.

The first study of this part aims at applying the proposed method, DOTCNN,
and the other techniques discussed in this paper to the five test data. Then we
evaluate the misclassification error rate for each technique. We do this in three
steps:

1. We start by finding the prototypes of the c clusters assumed in each dataset; for
example, the application of DOTCNN to BCW dataset gives the two prototypes

w1 = {2.654; 1.137; 1.276; 1.238; 2.081; 1.107; 1.571; 1.129; 1.201}
w2 = {6.670; 7.836; 7.566; 6.674; 5.198; 7.743; 7.252; 6.403; 2.360}.

2. We apply the nearest prototype rule to completely assign each object xk to
a unique cluster according to the decision rule xk ∈ Cj if j = arg min1≤j≤c{‖xk−
wj‖}, with Cj being the jth cluster.

3. We evaluate the number of misclassified objects n∗. In this step, we must have
a prior knowledge about the membership of each object. The results of this
study are shown in Table 1.

Figure 2. From left to right: Lena; Fishing-Boat; Baboon; Peppers

The second study in this part consists of measuring the quality of the partition
generated by each fuzzy technique viewed in this paper. The quality of the partition
P (X) is described by the partition coefficient PC(U) expressed mathematically as
follows:

PC(U) =
1

n

n∑
k=1

c∑
i=1

u2ik (46)

where U is the matrix of membership degrees, uik is the membership degree of xk
to the ith cluster.
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Figure 3. From left to right: Compressed by LVQ{c = 512}; Compressed by FLVQ{c =
512}; Compressed by IFLVQ{c = 512}; Compressed by DOTCNN{c = 512}

Figure 4. From left to right: Compressed by LVQ{c = 512}; Compressed by FLVQ{c =
512}; Compressed by IFLVQ{c = 512}; Compressed by DOTCNN{c = 512}

Figure 5. From left to right: Compressed by LVQ{c = 512}; Compressed by FLVQ{c =
512}; Compressed by IFLVQ{c = 512}; Compressed by DOTCNN{c = 512}

Figure 6. From left to right: Compressed by LVQ{c = 512}; Compressed by FLVQ{c =
512}; Compressed by IFLVQ{c = 512}; Compressed by DOTCNN{c = 512}
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Technique Misclassification error rate (%) for each dataset
Spect Wine FGlass BCW Yeast

FCM 39.7± 1.5 31.46± 1.12 71.68± 1.40 4.39± 0.72 69.18± 0.54
FGLVQ 79.4± 0.0 31.46± 2.25 77.94± 0.93 3.95± 0.36 68.8± 1.01
FLVQ↓ 79.4± 0.0 31.46± 1.12 76.54± 0.47 4.25± 0.18 73.52± 0.54
FLVQ↑ 79.4± 0.0 30.34± 1.12 68.32± 0.47 4.25± 0.18 65.84± 0.61
GLVQ 79.4± 0.0 35.06± 2.25 64.39± 0.93 3.95± 0.36 68.8± 1.28
HALVQ 79.4± 0.0 29.21± 1.69 67.29± 0.70 34.99± 0.3 68.8± 1.15
LVQ 43.4± 3.3 34.94± 3.93 67.1± 3.74 3.95± 1.29 69.74± 1.55
RGLVQ 42.7± 2.2 36.24± 2.25 64.02± 2.34 4.1± 0.80 67.72± 1.15
DOTCNN 22.8± 1.8 28.71± 2.25 58.32± 2.10 3.81± 0.73 62.71± 0.67

Table 1. Misclassification error rate for each technique viewed in this paper

Technique Spect Wine FGlass BCW Yeast

FCM 0.51± 0.03 0.79± 0.01 0.44± 0.08 0.84± 0.03 0.13± 0.02
FLVQ↓ 0.51± 0.04 0.67± 0.07 0.35± 0.10 0.76± 0.08 0.10± 0.03
FLVQ↑ 0.50± 0.03 0.67± 0.03 0.31± 0.07 0.76± 0.03 0.11± 0.03
HALVQ 0.50± 0.06 0.71± 0.05 0.14± 0.05 0.50± 0.05 0.10± 0.06
DOTCNN 0.59± 0.07 0.81± 0.04 0.55± 0.08 0.85± 0.05 0.16± 0.02

Table 2. Partition coefficient for each fuzzy technique viewed in this paper

The higher is the value of PC(U), the higher is the quality of the partition P (U).
The results of this study are shown in Table 2.

Finally, we are interested in calculating the entropy H(U) of the results obtained
by DOTCNN and fuzzy techniques studied in this paper. The partition entropy is
a global measure of fuzziness in the partition defined by the matrix of membership
degrees generated by the algorithm:

H(U) =
−1

n

n∑
k=1

c∑
i=1

uik log (uik) (47)

The higher is the entropy, the more ambiguous is the situation when we want
to completely assign each object to a unique cluster. The results of this study are
shown in Table 3.

Technique Spect Wine FGlass BCW Yeast

FCM 0.68± 0.09 0.38± 0.07 1.15± 0.06 0.27± 0.04 2.17± 0.01
FLVQ↓ 0.69± 0.02 0.58± 0.04 1.37± 0.07 0.39± 0.09 2.28± 0.03
FLVQ↑ 0.69± 0.06 0.58± 0.01 1.48± 0.09 0.39± 0.09 2.27± 0.08
HALVQ 0.69± 0.04 0.52± 0.08 1.95± 0.07 0.69± 0.04 2.3± 0.01
DOTCNN 0.58± 0.08 0.36± 0.04 0.94± 0.01 0.26± 0.08 2.03± 0.01

Table 3. Entropy of the fuzzy partition produced by each technique for each dataset
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Technique Codebook size
64 128 256 512

LVQ 20.445± 0.719 19.731± 0.41 21.721± 1.781 21.436± 1.56
FLVQ 19.825± 0.401 19.762± 0.392 18.831± 0.519 19.563± 0.415
IBFLVQ 32.679± 0.873 42.936± 0.835 34.658± 0.771 31.561± 0.995
DOTCNN 18.852± 0.402 19.181± 0.369 18.971± 0.539 18.397± 0.623

Table 4. Distortion between original “Lena” image and reconstructed image for each tech-
nique

Technique Codebook size
64 128 256 512

LVQ 25.596± 0.964 25.513± 0.456 32.849± 0.776 33.282± 0.858
FLVQ 24.913± 0.706 24.916± 0.98 25.145± 0.49 24.347± 0.37
IBFLVQ 38.814± 0.931 42.183± 0.62 41.217± 0.696 39.472± 0.263
DOTCNN 24.877± 0.702 24.455± 0.385 24.182± 0.694 24.051± 0.445

Table 5. Distortion between original “Fishing-Boat” image and reconstructed image for
each technique

Numerical results presented in Table 1 show the effectiveness of the proposed
technique by comparison to other techniques commonly cited in the literature. These
results are reinforced by those presented in Table 2, which show that the quality
of the partitions generated by DOTCNN is generally better than that generated
by other fuzzy techniques. Indeed, with DOTCNN, it is less ambiguous to assign
each object to its cluster, as we can see by comparing the values of the entropy of
the partitions generated by DOTCNN to those produced by the fuzzy techniques
studied in this paper (Table 3).

4.2 Application to Image Compression

Image compression is a particular kind of image processing, aimed at reducing the
number of bits required for representing the information contained in digital im-

Technique Codebook size
64 128 256 512

LVQ 21.976± 0.279 22.823± 0.667 21.620± 0.884 21.010± 0.505
FLVQ 22.799± 0.538 20.954± 0.708 22.804± 0.982 21.379± 0.259
IBFLVQ 43.506± 0.332 41.626± 0.319 37.329± 0.788 41.365± 0.797
DOTCNN 20.274± 0.801 20.145± 0.98 21.266± 0.337 19.397± 0.931

Table 6. Distortion between original “Baboon” image and reconstructed image for each
technique
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Technique Codebook size
64 128 256 512

LVQ 39.619± 0.979 39.711± 0.314 35.760± 0.852 38.230± 0.639
FLVQ 34.878± 0.338 29.791± 0.303 32.186± 0.741 27.756± 0.725
IBFLVQ 54.728± 0.982 61.165± 0.271 51.109± 0.612 50.919± 0.28
DOTCNN 30.847± 0.585 27.634± 0.957 33.371± 0.982 25.013± 0.258

Table 7. Distortion between original “Peppers” image and reconstructed image for each
technique

ages. For each image I received as input data, an image compression method pro-
vides, as output, a shorter representation of I, called C(I). The reverse processing,
known as image decompression, takes C(I) as input and generates a reconstructed
image I

′
as output. If I

′
is an exact replica of I, we say that the compression

method is lossless. Otherwise, the compression method is said to be lossy [14,
21]. In practice, however, lossy methods are generally preferred because of their
higher compression ratios. Each image I to be compressed is called a training
dataset, and each pixel I(x, y) of I is called a training vector. Compressing I con-
sists then in finding the best c-partition of the set of these training vectors. Each
cluster i of this partition being represented by a prototype or codeword vi ∈ Rp,
and the set V = {v1, v2, . . . , vc} ⊂ Rp of all prototypes is called codebook. To
obtain the reconstructed image I

′
, we replace each training vector by its closest

codeword [14, 21].

In this part, we use the four 512 × 512 images presented in Figure 2 [20]. To
obtain the training vectors that represent each of these images, we decompose it into
16 384 rectangular blocks of 4 × 4 pixels, and we consider each block as a training
vector.

The experimental work conducted on these examples consists in applying LVQ,
FLVQ, IBFLVQ and the proposed technique to the set of training vectors represent-
ing each image. The aim is to find the c code-book vectors representing the pixels
of each image. These code-book vectors were used to reconstruct each image. Then,
the distortion between each reconstructed image and the corresponding original one
was calculated, for each algorithm, using the expression

D =
1

n

n∑
k=1

p∑
j=1

(xkj − x
′

kj)
2 (48)

where xkj denotes the jth component of the training vector xk, and x
′
kj the jth

component of the kth pixel of the reconstructed image.

Numerical results of these experiments, for different values of the codebook size,
are summarized in Tables 4–7.

A brief examination of these tables shows that the observed distortion for the
proposed method is always smaller than those corresponding to the other methods.
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This means that the quality of the codebook generated by the proposed technique
is better than the quality of those generated by LVQ, FLVQ and IBFLVQ.

The reconstructed images are depicted in Figures 3–6 for each of the four com-
pared methods, respectively. All of these figures show a clear difference between the
qualities of the reconstructed images that is in favor of the proposed method.

5 CONCLUSION

In this paper, we introduced an unsupervised learning procedure for optimal and
dynamic training of competitive neural networks. The training process is optimal in
the sense that the procedure minimizes an objective function that represents an error
criterion. It is dynamic because the learning rate and the competition difficulty are
continously adjusted throughout iterations. Competition difficulty is introduced
as a new concept by the procedure, as well as some algorithmic parameters that
are heuristically initialized and adjusted. This procedure was successfully applied
to two different application domains: pattern classification and image compression.
For both applications, several examples of test data were used and the corresponding
numerical results were favorably compared to those provided by other well-known
algorithms. Further work on this research project will be concentrated on the ro-
bustness of the proposed method, mainly by finding more appropriate methods for
initializing and adjusting algorithmic parameters.
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