
Computing and Informatics, Vol. 28, 2009, 729–744

A HYBRID ALGORITHM FOR THE LONGEST
COMMON TRANSPOSITION-INVARIANT
SUBSEQUENCE PROBLEM

Sebastian Deorowicz

Institute of Informatics

Silesian University of Technology

Akademicka 16, 44-100 Gliwice, Poland

e-mail: sebastian.deorowicz@polsl.pl

Szymon Grabowski

Computer Engineering Department

Technical University of Lódź

al. Politechniki 11, 90-924 Lódź, Poland

e-mail: sgrabow@kis.p.lodz.pl

Manuscript received 16 July 2008; revised 23 June 2009

Communicated by Marián Vajteršič

Abstract. The longest common transposition-invariant subsequence (LCTS) prob-
lem is a music information retrieval oriented variation of the classic LCS problem.
There are basically only two known efficient approaches to calculate the length of the
LCTS, one based on sparse dynamic programming and the other on bit-parallelism.

In this work, we propose a hybrid algorithm picking the better of the two algo-
rithms for individual subproblems. Experiments on music (MIDI), with 32-bit and
64-bit implementations, show that the proposed algorithm outperforms the faster
of the two component algorithms by a factor of 1.4–2.0, depending on sequence
lengths. Similar, if not better, improvements can be observed for random data with
Gaussian distribution. Also for uniformly random data, the hybrid algorithm is the
winner if the alphabet is neither too small (at least 32 symbols) nor too large (up
to 128 symbols). Part of the success of our scheme is attributed to a quite robust
component selection heuristic.

730 S. Deorowicz, Sz. Grabowski

Keywords: Longest common transposition-invariant subsequence (LCTS), bit-

parallelism, sparse dynamic programming, string matching

Mathematics Subject Classification 2000: 68W05

1 INTRODUCTION

One of the classic problems in the field of string matching concerns the longest
common subsequence (LCS) of two sequences. The problem can be stated like
this: Given two sequences: A = a0, . . . , am−1 and B = b0, . . . , bn−1, over an alphabet
Σ = {0, . . . , σ−1}, report the length ℓ of a(ny) longest subsequence 〈ai1, ai2, . . . , aiℓ〉
of A, where ik < ik+1 for all k < ℓ, ai1 = bj1, ai2 = bj2, . . . , aiℓ = bjℓ

, and jk < jk+1 for
all k < ℓ. In other words, the output string is obtained from removing zero or more
characters from both A and B, i.e., is a subsequence of both A and B, and no longer
string with this property exists. W.l.o.g. we assume m ≤ n. Moreover, we assume
that σ = O(n). An extended version of the problem also asks for the sequence itself
(which does not have to be unique), not just its length. Note that the LCS problem is
a dual of the indel distance, capturing the number of insertions and deletions needed
to transform one sequence into another: 2 LCS(A, B) = n + m− id(A, B) [14]. It is
however accepted to speak about LCS when we are interested in finding the global
measure of similarity, and the indel distance (being a dissimilarity measure) when
a pattern shifts over a (much) longer text. Frequent applications of the LCS measure
include DNA sequence analysis and comparisons of different versions of program
source files (Unix diff tool). The classic dynamic programming (DP) algorithm for
LCS has O(mn) time complexity, and, surprisingly, not much better complexities
are known for this problem for the worst case. LCS has been thoroughly explored [5].
Also, numerous variations of the problem have been posed, see e.g. [14] for details.

The variation of LCS which is the concern of the current work was introduced
in 2000 [17] and has applications in music information retrieval. An important
trait of similar melodic sequences is that they can differ in the key, but humans
perceive them as same melodies. More formally, the problem of longest common

transposition-invariant subsequence (LCTS) is to find the length of a(ny) longest
subsequence 〈ai1, ai2, . . . , aiℓ〉 of A such that ai1 = bj1 +t, ai2 = bj2 +t, . . . aiℓ = bjℓ

+t,
for some −σ < t < σ. In other words, we look for the length of the longest
subsequence of A and B matching according to any transposition. The alphabet size
in music (MIDI) application is usually 128. A näıve algorithm for calculating LCTS
is to run the dynamic programming algorithm independently for each transposition,
which yields O(mnσ) time. Almost all known better solutions belong to one of the
two categories: they are bit-parallel or based on sparse dynamic programming.

Bit-parallelism [4] is a widely used technique (in many string matching problems)
making use of the simple fact that any real CPU works on many bits in parallel
(usually 32 or 64 nowadays). For LCS, there are known algorithms of O(n⌈m/w⌉)

A Hybrid Algorithm for the LCTS Problem 731

worst case time complexity [1, 7, 16], where w is the machine word size (in bits).
Adopting any of those algorithms for the LCTS problem is straightforward: it is
enough to run the LCS routine for each of the 2σ − 1 transpositions separately,
achieving O(nσ⌈m/w⌉) time complexity, not counting a preprocessing stage (to be
discussed later). Experiments show [8] that this approach is quite practical.

Sparse dynamic programming (SPD) [18] is a technique of visiting only a subset
of the DP matrix, namely those cells that correspond to matching pairs of characters
of A and B. For the LCS problem, this technique was first used in the seminal paper
by Hunt and Szymanski [15], and to apply it for the LCTS it was basically enough
to notice that each cell in the DP matrix corresponds to exactly one transposition.
This technique, subjected to a couple of refinements, allowed to obtain O(mn log m),
O(mn log log m) [18], O(mn log σ) [13], and finally O(mn log log σ) [21, 8] time com-
plexity. Also, in [8] Deorowicz presented a related variant, slightly worse in theory,
with O(mn⌈log σ/ log w⌉) worst-case time, which however won in his thorough tests
for MIDI and for uniformly random data over a large enough alphabet (say, of
size 96 or more). In this paper, we present a hybrid algorithm for LCTS making
use of a simple observation: if the alphabet is small, the bit-parallel approach is
a clear winner, but for large enough alphabets sparse dynamic programming algo-
rithms start to dominate. Our idea is to use the bit-parallel technique for frequent
transpositions and the Hunt–Szymanski algorithm for the rare ones. We assume
the AC0 RAM model of computation [3], in which the machine word has at least
log n bits (for any considered sequence lengths, n and m, n ≥ m) and the allowed
constant-time operations contain standard arithmetics (without multiplications and
divisions) and bitwise operations (and, or, shifts, etc.). Experiments in Section 7 on
MIDI and random data confirm attractiveness of this simple approach.

A preliminary version of this paper was presented in [12].

2 THE HUNT-SZYMANSKI ALGORITHM FOR LCS

A simple idea introduced in 1977 by Hunt and Szymanski [15] has set the ground
for the theoretically best LCS algorithms [2, 10], and also for best LCTS algorithms
based on sparse dynamic programming. In this section we present the HS algorithm
in detail.

We start with a definition. We say that a cell (i, j) of the dynamic programming
matrix M stores a match of rank k iff ai = bj and LLCS(a1..i = b1..j) = k. Now we
can present the algorithm.

Let the matrix M have m + 1 rows and n + 1 columns. In the preprocessing
we create lists of successive occurrences of all alphabet symbols in the shorter se-
quence, A. This requires O(m+σ) space and time, which is bounded by O(n) in our
case. Note that after this stage for each character of B we can access the occurrence
list of this character in A in constant time. Traversing a list obviously requires O(1)
time per item. For a technical reason, we will scan the lists in the reverse order, i.e.,
corresponding to right-to-left scans (with skips) over the rows of M .

732 S. Deorowicz, Sz. Grabowski

We also maintain an array T , which stores at position t the leftmost seen-so-far
column with a match of rank t.

At the beginning this array is zeroed. Throughout the whole processing we store
the index of the last non-zero cell in T in a variable kmax.

Now, we visit the matching cells of M , rowwise and from right to left in rows,
using the lists obtained in the preprocessing stage. Let a considered match be at
cell (i, j), where i denotes the row and j denotes the column. We look for the
minimum index t such that T [t] ≥ j. If there is no such index t, that is, T [h] < j,
for h = 1..kmax, then we set T [kmax + 1] ← j and increment kmax by one. In the
opposite case we distinguish between T [t] = j and T [t] > j. The equality means
that the current match has the same rank as some match at the same column
but in an earlier row, i.e., the current match does not imply any update to T . If
however T [t] > j, then we set T [t]← j, as there must be that T [t− 1] < j (if only
t > 1) and there hasn’t been yet a match with rank t in the jth (or earlier) column.
Note that because of the right-to-left scan order, there can be several updates to
a single cell of T within a single row of M . The desired LLCS is the value of kmax

after finishing the last row.

Let r denote the number of all matches in M . It is easy to notice that the time
complexity of the algorithm depends on how fast one can find, for each of r matches,
the proper t to satisfy the aforementioned inequality. The plain binary search im-
mediately leads to O(n + r log m) time (the additive term n is from visiting all the
matrix rows, even if empty), but since the non-empty range of T never has more
than ℓ = LLCS(A, B) elements, it is more precise to express the worst case com-
plexity as O(n + r log ℓ). Note that we can ignore the preprocessing cost since it is
never dominating. Note also that r = O(mn) in the worst case.

3 THE DEOROWICZ VARIANT

The Hunt-Szymanski concept was inspiration for a number of subsequent algorithms
for LCS calculation. Finding the rank of a match can be performed in a more refined
way than with binary search, in particular, using the van Emde Boas (vEB) dynamic
data structure [9] which is applicable if the universe of keys is nicely bounded;
a possibility noticed already by Hunt and Szymanski in their original work. In our
problem, this translates to O(n + r log log m) worst case complexity. There are even
better (and more complex) theoretical solutions [2, 10] from the Hunt–Szymanski
family, where for example the symbol r is replaced with D, the number of so-called
dominant matches (D ≤ r).

In this section, we outline a practical HS variation by Deorowicz [8], which was
used in the cited work for calculating LCTS in O(mn⌈log σ/ log w⌉) worst-case time
(in an algorithm denoted there as OUR-3).

The HS routine is based on finding the successor of the current column index in
the array T . The idea from [8] was to support the successor queries with a w-ary
tree, where w is the machine word size (in bits). More precisely, the w-ary tree

A Hybrid Algorithm for the LCTS Problem 733

is a complete tree of arity w, storing unique keys from the range 0, . . . , v − 1, in
which each node is an array of exactly w bits. In the RAM model of computation,
w = Θ(log n), where n is, roughly speaking, the length of the longest addressable
text. Because of its regularity, the w-ary tree can be implemented without any
pointers (note also that the keys do not hold any satellite information). The height
h of this tree is O(⌈log v/ log w⌉).

In Deorowicz’s LCTS algorithm, w-ary trees are used to store the values of
the T arrays for individual transpositions. In total, 2σ−1 w-ary trees are maintained.
To check if j is in the tree (for a given transposition), it is enough to examine one
particular bit in a certain leaf, which takes O(1) time. Inserting or removing a value
needs to set or reset the corresponding bit in the leaf and update the nodes upward
the tree, with the overall complexity of O(h) = O(⌈log v/ log w⌉). The successor
operation for j requires looking for the next set bit in the leaf corresponding to
value j (which can be done in constant time), and if there is no such set bit, moving
upward the tree and following analogously until such a bit is found (or it is found that
there is no value greater than j in the tree). Because each node is handled in O(1)
time, the overall time complexity is again O(⌈log v/ log w⌉). Figure 1 illustrates.
A straightforward solution would take v = m, but in the cited work it was shown
how to decrease v to min(σ, m), which is beneficial both for speed and storage
occupancy.

1 0 1 0

1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0

1 0 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 1. The w-ary tree [8], w = 4

3.1 The Case of Large w

In the presented variant it was assumed that w = Θ(log n) and then finding the
successor (the next set bit) within a machine word can be achieved with aid of
a lookup table of, e.g., O(

√
n) size, in constant time. Still, the case of a large

w (a scenario which is getting realistic in recent years) requires further considera-
tions.

We take a look at two important cases. In one we have w = O(logO(1) n), where
the exponent is greater than 1. We can then work with only a prefix (or any factor
for that matter) of such a word of length log n bits, as log w remains O(log log n),
so the time complexity is as above. The other interesting case is w = O(nε). What
we can do here is to use the algorithm by Brodnik et al. [6] which identifies the
least significant set bit of a word in Θ(log log w). Interestingly, they prove that their
time complexity bound is tight, if e.g. multiplications and divisions are forbidden
(we note that some modern CPUs contain a constant-time opcode for the number

734 S. Deorowicz, Sz. Grabowski

of leading zeros, which can be a practical solution, but goes beyond the assumed
AC0 RAM model). Adopting this problem to our setting is straightforward, using
bit masking. As a result, we need to spend Θ(log log w) time in a node, which leads
to O(⌈log σ log log w/ log w⌉) overall time per matrix cell, for any w = ω(logO(1) n).
Assuming w = O(nε), we obtain O(⌈log σ log log n/ logn⌉) time. We note in passing
that erasing the next set bit (or e.g. the least significant bit in a word) can be easily
performed in O(1) time using a folklore trick but in a w-ary tree we could use this
idea only in leaves; in non-leaves we must know the bit position too, as it points to
the respective child of the current node.

4 BIT-PARALLEL APPROACH

Another approach to the LCS (and subsequently to LCTS) problem is based on the
well-known property of the dynamic programming matrix M : two adjacent values
in a row, or in a column, differ by at most 1. Thanks to this property, efficient bit-
parallel LCS-solving algorithms can be devised, and the first of them was presented
by Allison and Dix [1]. If the length of the shorter of the two sequences is not greater
than the machine word size (in bits), then the algorithm runs in linear time (not
counting the preprocessing). This is not always the case, of course, but longer bit-
vectors, representing one of the sequences can be simulated using several machine
words. In general, the time complexity of this algorithm is O(n⌈m/w⌉) and does
not depend on the content of the two sequences.

Future attempts along these lines, by Crochemore et al. [7] and Hyyrö [16], were
to simplify and speed-up the bit-parallel computation formulae, but the algorithm
complexity remained.

All those variants are based on preprocessing using O(σ⌈m/w⌉ + m) time and
O(σm) bits of space. In that phase, σ bit vectors PMλ of size m are generated,
where for any alphabet symbol λ, the bit PMλ[i] is set iff Ai = λ.

In the main loop of the Allison–Dix algorithm, there are six operations (here and
later: assignment operations not counted) per a character of B. This was reduced
to five operations in the Crochemore et al. algorithm [7], which was successively
reduced by Hyyrö [16] to four operations, without e.g. table lookups except for the
references to vectors PMλ.

In Hyyrö’s experiments (AMD Athlon64 with w = 64), the Allison–Dix algo-
rithm was the slowest among the three bit-parallel variants, but the Crochemore et
al. algorithm was faster by only 5 %, while the algorithm from Figure 2 was faster
than the Crochemore et al. by 15 %.

5 FROM LCS TO LCTS

Mäkinen et al. [18] made a simple observation: each cell in M corresponds to exactly
one transposition in the LCTS problem. This means that the technique of Hunt-
Szymanski (in virtually any possible variation) can be separately applied for each

A Hybrid Algorithm for the LCTS Problem 735

{Preprocessing}
01 for λ ∈ Σ do PM λ ← 0m

02 for i← 0 to m− 1 do PM ai
← PM ai

| 0m−i−110i

{Computing LCS}
03 V ← 1m

04 for j ← 0 to n− 1 do

05 U ← V & PM bj

06 V ← (V + U) | (V − U)

{Calculating number of 0’s in V }
07 r ← 0; V ← ˜V

08 while V 6= 0m do

09 r ← r + 1; V ← V & (V − 1)
10 return r

Fig. 2. Hyyrö’s bit-parallel algorithm [16] for LCS(A, B) computation. The preprocessing
is performed in lines 01–02. The meaning of the binary operators & , | , ˜ is like in
the C programming language.

of 2σ − 1 transpositions. The total amount of matches is exactly mn, and this
easily implies the time complexity of O(mn log ℓ), or O(mn log log m) in a more
theoretical version (we neglect the preprocessing here, which is also not problematic
under typical assumptions). More recent results, including the practical Deorowicz’s
algorithm described in Section 3, have been listed in Section 1; they all are based
on sparse dynamic programming.

It is even simpler to switch from LCS to LCTS using the bit-parallel algorithms:
the procedure is run for each transposition separately, yielding the extra σ multi-
plicative factor. Albeit this can be called a brute-force technique, it fares surprisingly
well for the MIDI domain. What needs a short discussion is the preprocessing for
bit-parallel LCTS algorithms. In a näıve variant, the LCS preprocessing routine is
simply run for each of the 2σ− 1 transpositions, yielding overall O(σ2⌈m/w⌉+ mσ)
time. This, however, can be easily improved to O(σ⌈m/w⌉ + m) time (and simi-
larly the space can be reduced), by merely using LCS preprocessing for the LCTS
problem. The trick is to modify a bit the search phrase; for a given transposition
t and the current column corresponding to symbol bj, the current bit-vector PMλ

is taken for the alphabet symbol λ = bj − t (provided that the resulting symbol
is within the alphabet range). This idea was found practical and is used in our
implementation, to speed-up the calculations in the BP component by up to 2 %.
Note that the number of non-zero PMλ vectors is at most min(m, σ), and for the
remaining alphabets symbols (if any) there is no need to even allocate space for the
bit-vectors; the price we pay for it is an additive O(m + σ) term, which leads to
overall preprocessing time O(min(m, σ)⌈m/w⌉+ m + σ).

Less trivially, the preprocessing can be improved even more, to O(m) worst-
case time, for the price of increasing the space by a constant factor. This can be
achieved from getting rid of zeroing the bit vectors even once. To this end, we use

736 S. Deorowicz, Sz. Grabowski

the old array initialization trick [19, Section III 8.1], which however requires extra
arrays, increasing the space up to three times. Recently, Navarro [20] presented
a space-efficient variant of this idea, with only n + o(n) extra bits needed for an
array with n arbitrary items, on a RAM machine, which translates in our problem
to ⌈m/w⌉ + o(⌈m/w⌉) bits.

We haven’t implemented this idea (in any variant) but we don’t anticipate it to
be practical, as any access to PMλ must be translated to three array accesses (in
the original, more space-demanding variant), if the trick in question is applied.

6 OUR ALGORITHM

It is easy to notice that the two presented approaches significantly differ in their
characteristics: the algorithms from the Hunt–Szymanski family are efficient when
matches in the dynamic programming table are infrequent, while bit-parallel al-
gorithms are insensitive to the distribution of the input data. When we focus on
LCTS rather than LCS, however, it is wiser to say that those two approaches are
not simply different: they can be complementary. The bit-parallel (BP) approach
for LCS adapted for the LCTS problem runs in time directly proportional to the
alphabet size, but its running time for each alphabet symbol (i.e., transposition in
that case) is approximately the same. This is not the case with HS, where processing
infrequent transpositions is faster than the frequent ones.

Here comes our simple idea: use HS for transpositions with small enough number
of occurrences, and the bit-parallel approach for the remaining ones. Now, we have
to find a relevant threshold to properly distinguish between “HS-friendly” and “BP-
friendly” transpositions.

We start with counting the number of cells corresponding to each transposition,
which can be done in O(n + m + σ2) time, and we sort the transpositions according
to their frequency, in O(σ log σ) or O(σ logσ n) time, the latter with use of radix sort.
Let us note in passing that the straightforward O(n + m + σ2)-time algorithm for
gathering match counts for transpositions can be improved to O(n+m+σ log σ), with
FFT. To this end, we create two arrays, CA and CB, of 2σ−1 cells, one for sequence A
and one for B, which store the number of occurrences of alphabet symbols in A
and B, respectively, in their first halves, and are padded with zeros elsewhere. Now,
the cyclic correlation of discrete sequences CA and CB can be calculated in O(σ log σ)
time, using FFT, and its 2σ−1 coefficients are the numbers of occurrences of all 2σ−1
transpositions, i.e., exactly what we needed. Note that this O(σ log σ) complexity
assumes constant-time multiplications, which is fulfilled “in practice”, but not in the
AC0 RAM model (cf. Section 1), where this should be multiplied by log log n yet.
Fortunately, we can achieve O(1)-time multiplications in our case, using a lookup
table with precomputed products for all pairs of ⌈(log2 n)/3⌉-bit integers, which is
enough to obtain the product of numbers having 3 times more bits in constant time.
Building the lookup table takes o(n) time, i.e., can be neglected in overall time
complexity.

A Hybrid Algorithm for the LCTS Problem 737

In the following, we need some extra notation. Let R(t), 0 ≤ R(t) < 2σ − 1,
be the rank of a transposition t, that is, its position in the sorted order; R(t) = 0
if t is the most frequent (or any of them if more than one) transposition. Also,
let f(t) denote the number of occurrences of transposition t. Now we perform
the preprocessing routines for the BP and HS algorithms, as described in previous
sections, and after that we are ready to run the BP and HS routines for some sampled
transpositions. Namely, we take the transposition t1 of rank 0, and transposition t2
of rank ⌈(2σ−1)/3⌉−1 and run the BP algorithm for them, measuring the execution
times, time(t1) and time(t2). We remove t1 and t2 from the transposition list, and
(conceptually) refresh the rank list. Similarly, we take the transposition t3 of rank
⌈(2σ − 3)/3⌉ − 1 and t4 of rank 2σ − 4 (i.e., the least frequent), and run the HS
algorithm for them, storing the execution times. We assume that for both component
algorithms, BP and HS, their execution time is linear in the number of matches,
for fixed values of n, m, and σ (this is only an approximation, but according to our
preliminary experiments, it works fairly well in practice). Of course, the dependence
on the number of matches is clear for the HS algorithm, while it is less obvious
(and much weaker) for the BP algorithm, but still it exists, due to some machine-
dependent issues (the more matches, the slower the BP algorithm works). The
four time measurements are enough to pass two straight lines whose intersection
point will determine the range of applicabilities for both components. Namely, we
pass a straight line through the points (f(t1), time(t1)) and (f(t2), time(t2)), and
another straight line through (f(t3), time(t3)) and (f(t4), time(t4)). Transpositions
with the number of matches at least as large as the first coordinate of the intersection
point will be handled by the BP algorithm, and those with fewer matches by the
HS algorithm. Naturally, we do not handle those four sampled transpositions again.
An extra improvement comes from the idea of premature stoppage in the HS routine;
namely, if the algorithm for a given transposition t cannot beat the result of the best-
so-far transposition (even in the most optimistic case when each of the remaining
rows increases LLCS(t) by 1), it is stopped. (Although not mentioned there, that
idea was also used in [8].) Statistically, denser transpositions have greater chance
to yield long common subsequences, therefore we first use the BP component, then
HS, starting from denser transpositions; as a result the effectiveness of the stoppage
idea grows.

Finally, we note that the overall time of the hybrid algorithm is O(σn⌈m/w⌉+
mn⌈log σ/ log w⌉), including the preprocessing costs of both components, in the
worst case (assuming w = O(logO(1) n); the case of larger w was discussed in Sub-
section 3.1).

7 EXPERIMENTAL RESULTS

We have run several experiments to evaluate the performance of our algorithm
against its strongest competitors. The experiments were carried out on an AMD
Athlon64 5 000+ (CPU clock 2 600 MHz) machine with 2 GB of RAM, running Win-

738 S. Deorowicz, Sz. Grabowski

dows Vista 64 operating system. We have implemented all the algorithms in C++,
and compiled with Microsoft Visual C++ 2005. As we apply bit-parallelism, the
performance between the case of w = 32 and w = 64 should differ significantly,
which we confirm, presenting the results of 32- and 64-bit implementations.

We considered three cases: running the algorithms (i) on music data, (ii) on
uniformly random data, and (iii) on random data with Gaussian distribution; in the
latter two cases, for varying alphabet size. The mean of the Gaussian distribution
was always set in the middle of the alphabet and the standard deviations to σ/8.

For the first set of experiments we used a concatenation of 7 543 music pieces,
obtained by extracting the pitch values from MIDI files. The total length is 1 828 089
bytes. The pitch values are in the range 0, . . . , 127, which corresponds to 255 possible
transpositions. This data is far from random: the six most frequent pitch values
occur 915 082 times, which is approximately 50 % of the whole text, and the total
number of different pitch values is just 55. Consequently, the number of possible
existing “transpositions”, i.e., differences between any pairs of characters from two
different excerpts of this file, is much lower than the theoretical maximum of 255.
This dataset was previously used in the literature (e.g., [8, 11]), for various MIR-
oriented problems, including LCTS.

A set of 101 pairs of randomly extracted excerpts from the text was generated.
We varied the lengths, n and m, of those sequences, but always set n = m. The
reported times (and other measurements, like chosen thresholds) are the medians
over all 101 trials. Figure 3 demonstrates the relation between the (percentage)
amount of most frequent transpositions and the amount of matches covered by
them. We can see, for example, for the MIDI data, that the top 20 % of the existent
transpositions (sorted by frequency) already cover more than half of the matches
while 60 % of the existent transpositions are enough to cover over 90 % of matches.
For the uniformly random data, as expected, the curve is more flat.

0 20 40 60 80 100
0

20

40

60

80

100

RND64 n=m=1024

MUSIC n=m=1024

% transpositions

%
m

a
tc

h
e

s

Fig. 3. % matches vs. % transpositions

A Hybrid Algorithm for the LCTS Problem 739

Figure 4 shows the overall processing time of our hybrid algorithm as a function
of the minimal number of matches in transpositions handled by the HS component.
Basically the same phenomenon, as a function of varying alphabet size (only for
the two random distributions), is also presented in Figure 5. Note that extreme pa-
rameters of the thresholds trigger a single component for all transpositions; in most
cases, for alphabet size up to 64 or 128 (depending on the dataset and whether the
implementation is 32- or 64-bit), the “single best” component is the BP algorithm,
while for larger alphabets the HS algorithm starts to win. It can be also seen that
the Gaussian data are much more sensitive to small changes of the thresholds (in
their low ranges), which is not surprising.

0.001 0.01 0.1 1 10

0.5

1

2

5

10

20

50

100

200
32-bit

64-bit

32-bit

64-bit

threshold [%]

ti
m

e
[m

s
]

0.001 0.01 0.1 1 10

0.5

1

2

5

10

20

50

100

200

32-bit

64-bit

32-bit

64-bit

threshold [%]

ti
m

e
[m

s
]

0.001 0.01 0.1 1 10

0.5

1

2

5

10

20

50

100

200

32-bit

64-bit

32-bit

64-bit

threshold [%]
ti
m

e
[m

s
]

a) b) c)

Fig. 4. Overall processing time of the hybrid with varying threshold of the minimal number
of matches in transpositions handled by the HS component. a) MUSIC, b) RANDOM-
64, c) GAUSS-64. Top pairs of curves for n = m = 4 096, bottom pairs for n = m =
512

0.001 0.01 0.1 1 10

10

20

50

100

200

500

σ = 16

σ = 32

σ = 64

σ = 128

σ = 256

% matches

ti
m

e
[m

s
]

0.001 0.01 0.1 1 10

10

20

50

100

200

500

σ = 16

σ = 32

σ = 64

σ = 128

σ = 256

% matches

ti
m

e
[m

s
]

a) b)

Fig. 5. Overall processing time of the hybrid with varying threshold of the total percentage
of matches handled by the HS component (transpositions ordered from the sparsest to

the densest). n = m = 4 096, σ = 16, . . . , 256, 64-bit implementation: a) RANDOM,
b) GAUSS

It occurs that the best split for the music data allots about 80–90 % matches
(from the most frequent transpositions) to the BP algorithm, while the remaining

740 S. Deorowicz, Sz. Grabowski

10–20 % matches are handled by the HS variant (cf. Table 1–4). In other words (cf.
Figure 3), less than 40 % of the most frequent transpositions should be processed by
BP. Note also that the BP component is faster by about 25 % (i.e., needs about 20 %
less time) than the HS component (if both are applied exclusively) for music data
and w = 32. For the 64-bit implementation the advantage of the BP component
even grows to 2-fold. For the uniformly random data (σ = 64), those differences are
even greater, but drop rapidly with growing alphabet size (on the other hand, for σ
smaller than 64, the advantage of the BP algorithm is even more striking).

We also evaluated an “oracular” component selection (column Best time in all
tables), which sets the lower bound for any selecting heuristic. It can be seen that
our idea based on crossing lines is quite stable across all experiments and the loss to
the lower bound is usually within 2 % of overall time (the worst case is in Table 2,
n = m = 256, where our time was by over 6 % longer than with using the oracle).

n = m BP time HS time Best time Hyb. time Best thr. Hyb. thr. BP trans BP match
[ms] [ms] [ms] [ms] [%] [%] [%] [%]

256 0.3157 0.5167 0.2686 0.2768 1.6928 1.3930 45.4 83.8
512 1.4366 1.7222 0.9210 0.9686 1.8621 1.5752 42.1 80.5

1 024 5.5727 6.3598 3.0630 3.1441 1.6928 1.4759 40.2 81.5
2 048 23.2568 25.5058 13.3131 13.5623 1.5389 1.4969 34.8 78.3
4 096 91.7169 95.0223 44.9423 45.6610 1.3990 1.4930 34.7 80.9
8 192 381.6627 381.3309 185.5993 188.4778 1.5389 1.5642 33.6 79.9

Table 1. MUSIC, 32-bit implementation

n = m BP time HS time Best time Hyb. time Best thr. Hyb. thr. BP trans BP match
[ms] [ms] [ms] [ms] [%] [%] [%] [%]

256 0.1842 0.5183 0.1842 0.2151 0.0000 0.7371 61.9 92.4
512 0.6811 1.7288 0.5669 0.5868 0.8687 0.7022 61.2 93.1

1024 3.0936 6.3303 2.0560 2.1032 1.1562 0.8202 55.0 91.1
2048 12.2291 25.5285 8.3442 8.6279 0.8687 0.7895 52.1 90.1
4096 47.1900 95.0745 28.4840 29.0666 0.7897 0.7683 48.9 91.8
8192 193.8347 380.7648 112.5319 113.1798 0.8687 0.7952 43.7 91.2

Table 2. MUSIC, 64-bit implementation

n = m BP time HS time Best time Hyb. time Best thr. Hyb. thr. BP trans BP match
[ms] [ms] [ms] [ms] [%] [%] [%] [%]

256 0.7996 1.4635 0.7677 0.7771 0.1890 0.1898 75.6 93.6
512 2.7441 4.5429 2.4480 2.4640 0.2287 0.2248 71.3 91.2

1024 11.8452 15.4458 9.6989 9.7430 0.3044 0.2938 62.3 85.3
2048 42.9331 56.6781 34.5518 34.7321 0.3044 0.2914 62.3 85.6
4096 164.4345 215.2981 130.7266 131.3415 0.3044 0.2933 62.3 85.3
8192 729.7012 877.4197 572.9071 576.5836 0.3349 0.3295 57.6 81.8

Table 3. RANDOM-128, 64-bit implementation

The detailed timings of the algorithms: HS, BP and our hybrid, are given in the
tables, for 32-bit and 64-bit implementations separately. In rows, the problem size
changes from n = m = 256 to n = m = 8192. The right half of the columns requires
a brief explanation. Best threshold specifies the minimum fraction of matches per

A Hybrid Algorithm for the LCTS Problem 741

n = m BP time HS time Best time Hyb. time Best thr. Hyb. thr. BP trans BP match
[ms] [ms] [ms] [ms] [%] [%] [%] [%]

256 0.5463 1.1105 0.4193 0.4316 0.1420 0.2572 51.1 94.3
512 1.9991 3.7308 1.3030 1.3254 0.1890 0.2741 46.7 94.0

1024 9.2762 13.3282 5.0989 5.1376 0.3349 0.3455 40.3 92.3
2048 35.9229 50.6291 18.0331 18.1210 0.3349 0.3336 38.0 92.6
4096 144.2099 198.6377 67.3530 67.4932 0.3044 0.3349 36.1 92.7
8192 597.2110 778.5215 263.3859 263.5459 0.3684 0.3506 34.3 92.3

Table 4. GAUSS-128, 64-bit implementation

transposition, for which the BP algorithm starts to work faster than the HS algo-
rithm (if used for this transposition). Hybrid threshold conveys similar information;
the difference is that here we see the threshold selected by our component selection
heuristic. Roughly, the closer those two threshold values are, for a given problem
instance, the better the heuristic is expected to work. 1

The next column, BP transpositions is the fraction of transpositions handled
by the BP component, using our selection heuristic. Finally, the column BP match

holds the fractions of matches in the transpositions for which the BP algorithm is
triggered.

The speedup factor of the hybrid algorithm over the better of the two compo-
nents (i.e., BP) on the music data varies from 1.36 (n = 256) to 1.97 (n = 8192) in
the 32-bit implementations, and from 1.11 (n = 256) to 1.71 (n = 8192) in the 64-
bit implementations, so it improves with growing n. Note that we skip non-existent
transpositions in the BP algorithm, which boosts its performance on the music data
very significantly.

On uniformly random data, the situation is somewhat different. For small to
moderate σ (up to 64) the bit-parallel algorithm is much faster than the HS one
(note the scale on Figure 5), even in the 32-bit version the difference is 4-fold in
case of σ = 16 and n = 4 096 (switching to 64 bits makes is almost 7-fold), but
the picture changes for σ = 128 and σ = 256. Interestingly, for small alphabets
the HS component beats the BP component on some (few) transpositions, so the
hybrid, with the threshold selected properly, again appears better than both its
components (but with the speedup of about 10 % only, at best). For a large enough
alphabet (σ = 256) the BP algorithm usually can win on no transposition, hence the
“optimal” hybrid degenerates into the HS component. The border case is σ = 128
where HS takes the lead but its advantage over BP is quite moderate; in that case

1 The presented thresholds are medians from individual experiments, but there is a sub-
tle difference between “best times” and “hybrid times”. The column Best time uses a single
threshold (the one for which the median time over 101 runs is minimized), while for the
column Hybrid time individual thresholds for each test run are used (and the median times

for runs with those possibly different thresholds are presented). Although insignificant in
practice, this could, in theory, lead to surprising effects, e.g., a shorter Hybrid time than
Best time. The reason for which we chose this presentation methodology was to make it
compatible with Figures 4 and 5, where a single “best threshold” had to be used.

742 S. Deorowicz, Sz. Grabowski

the hybrid algorithm is faster than HS by 12–24 % (easy to guess, the speedups
close to 24 % are for the 32-bit implementations).

The HS algorithm does not change its speed when switched from 32 to 64 bits,
while the improvement is obvious for the BP algorithm, and the speedup factor
varies from about 1.6 to 1.9. The stages of the algorithm which do not gain from
longer registers are the preprocessing and the final counting of the set bits in vec-
tor V (cf. Figure 2). The columns BP transpositions and BP match confirm that
after switching from the 32- to 64-bit implementation, the bit-parallel component is
selected more often.

8 CONCLUSIONS

We presented a simple hybrid algorithm for the longest common transposition-
invariant problem, choosing “the best of the two worlds”: bit-parallel and sparse
dynamic programming approaches. Experiments confirm practicality of this idea,
especially on real music (MIDI) data, where the LCTS problem has a natural appli-
cation. Our hybrid requires a (fast and reliable) criterion for selecting the compo-
nent for each transposition. We solved this problem giving a simple heuristic, which
typically loses not more than 2 % time compared to the selection with an oracle.

On the overall, the proposed algorithm outperforms the faster of the two compo-
nent methods on the MIDI data by a factor of 1.4–2.0 in 32-bit implementations and
1.1–1.7 in 64-bit implementations, where the larger gaps are for longer sequences.
On the uniformly random data the improvements are smaller, and they rarely ex-
ceed the factor 1.2. The gains are greater for Gaussian distribution of data, and
they sometimes exceed the factor 2.0, even in the 64-bit implementations.

Acknowledgements

The research of this project was partially supported by the Minister of Science and
Higher Education grant 3177/B/T02/2008/35 (first author) and a habilitation grant
(2008–2009) of Rector of Technical University of Lódź (second author).

REFERENCES

[1] Allison L.—Dix T. L.: A Bit-String Longest Common Subsequence Algorithm.
Information Processing Letters, Vol. 23, 1986, No. 6, pp. 305–310.

[2] Apostolico A.—Guerra C.: The Longest Common Subsequence Problem Revi-
sited. Algorithmica 2, pp. 316–336, 1987.

[3] Allender E.: Circuit Complexity before the Dawn of the New Millennium. Proc.
of the 16th Conf. on Foundations of Software Technology and Theoretical Computer
Science, 1996, pp. 1–18.

[4] Baeza-Yates, R.A.: Efficient Text Searching. Ph. D. thesis. Department of Com-
puter Science, University of Waterloo, May 1989. Also as Research Report CS-89-17.

A Hybrid Algorithm for the LCTS Problem 743

[5] Bergroth, L.—Hakonen, H.—Raita, T.: A Survey of Longest Common Subse-

quence Algorithms. Proc. of the 7th Int. Symp. on String Processing and Information
Retrieval (SPIRE), 2000, pp. 39–48.

[6] Brodnik, A.—Miltersen, P. B.—Munro, J. I.: Trans-Dichotomous Algorithms
Without Multiplication – Some Upper and Lower Bounds. Proc. of the 5th Int. Work-
shop on Algorithms and Data Structures (WADS), 1997, pp. 426–439.

[7] Crochemore, M.—Iliopoulos, C. S.—Pinzon, Y. J.—Reid, J. F.: A Fast and
Practical Bit-Vector Algorithm for the Longest Common Subsequence Problem. In-
formation Processing Letters, Vol. 80, 2001, No. 6, pp. 279–285.

[8] Deorowicz, S.: Speeding up Transposition-Invariant String Matching. Information
Processing Letters, Vol. 100, 2006, No. 1, pp. 14–20.

[9] van Emde Boas, P.—Kaas, R.—Zijlstra, E.: Preserving Order in a Forest
in Less Than Logarithmic Time and Linear Space. Information Processing Letters,
Vol. 6, 1977, No. 3, pp. 80–82.

[10] Eppstein, D.—Galil, Z.—Giancarlo, R.—Italiano, G. F.: Sparse Dynamic
Programming I: Linear Cost Functions. J. of the ACM, Vol. 39, 1992, No. 3,
pp. 519–545.

[11] Fredriksson, K.—Mäkinen, V.—Navarro, G.: Flexible Music Retrieval in Sub-
linear Time. International Journal of Foundations of Computer Science Vol. 17, 2006,
No. 6, pp. 1345–1364.

[12] Grabowski, Sz.—Deorowicz, S.: Nice To Be A Chimera: A Hybrid Algorithm
For The Longest Common Transposition-Invariant Subsequence Problem. In Proceed-
ings of the 9th International Conference on Modern Problems of Radio Engineering,
Telecommunications and Computer Science (TCSET 2008), Lviv-Slavsko, Ukraine,
2008, pp. 50–54.

[13] Grabowski, Sz.—Navarro, G.: O(mn log σ) Time Transposition Invariant LCS

Computation. Technical Report TR/DCC-2004-6, University of Chile, Department
of Computer Science, September 2004, ftp://ftp.dcc.uchile.cl/pub/users/

gnavarro/transpszymon.ps.gz.

[14] Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

[15] Hunt, J.W.—Szymanski, T.G.: A Fast Algorithm for Computing Longest Com-
mon Subsequences. Comm. of the ACM, Vol. 20, 1977, No. 5, pp. 350–353.

[16] Hyyrö, H.: Bit-Parallel LCS-length Computation Revisited. Proc. of the 15th Aus-
tralasian Workshop on Combinatorial Algorithms (AWOCA), University of Sydney,
Australia, 2004.

[17] Lemström, K.—Ukkonen, E.: Including Interval Encoding Into Edit Distance
Based Music Comparison and Retrieval. Proc. of Symposium on Creative & Cultural
Aspects and Applications of AI & Cognitive Science, 2000, pp. 53–60.

[18] Mäkinen, V.—Navarro, G.—Ukkonen, E.: Transposition Invariant String
Matching. J. of Algorithms, Vol. 56, 2005, No. 2, pp. 124–153.

[19] Mehlhorn, K.: Data Structures and Algorithms 1: Sorting and Searching.
Springer–Verlag, 1984.

744 S. Deorowicz, Sz. Grabowski

[20] Navarro, G.: Dynamic Dictionaries in Constant Worst-Case Time. Technical Re-

port TR/DCC-2007-11, University of Chile, Department of Computer Science, Octo-
ber 2007, ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/consthash.ps.gz.

[21] Navarro, G.—Grabowski, Sz.—Mäkinen, V.—Deorowicz, S.: Improved

Time and Space Complexities for Transposition Invariant String Matching. Techni-
cal Report TR/DCC-2005-4, University of Chile, Department of Computer Science,
March 2005, ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/mnloglogs.ps.gz.

Sebastian Deorowi
z received his M. Sc. degree in Silesian
University of Technology in 1998 and Ph. D. degree in the same
university in 2003, both in computer science. His research inter-
ests are in string matching, sequence alignment, data compres-
sion, and combinatorial optimization. He has published about
20 journal and conference papers. He is currently an assistant
professor at Silesian University of Technology in Gliwice.

Szymon Grabowski received his M. Sc. degree in Lódź Uni-
versity in 1996 and Ph. D. degree in AGH University of Science
and Technology (formerly known as University of Mining and
Metallurgy) in Cracow in 2003, both in computer science. His
former research, including Ph. D. dissertation, involved nearest
neighbor classification methods in pattern recognition, also with
applications in image processing. Currently, his main interests
are focused in string matching and text indexing algorithms, and
data compression. Some of his particular research topics include
various approximate string matching problems, compressed text

indexes, and XML compression. He has published about 80 papers in journals and con-
ferences. He is currently an assistant professor at Computer Engineering Department of
Technical University of Lódź.

