
Computing and Informatics, Vol. 29, 2010, 117–132

A GENETIC ALGORITHM APPROACH
FOR THE CAPACITATED SINGLE ALLOCATION
P-HUB MEDIAN PROBLEM

Zorica Stanimirović

Faculty of Mathematics
University of Belgrade
Studentski trg 16/IV
11001 Belgrade, Serbia
e-mail: zoricast@matf.bg.ac.rs

Manuscript received 11 September 2006; revised 15 October 2007
Communicated by János Fodor

Abstract. In this paper the Capacitated Single Allocation p-Hub Median Problem
(CSApHMP) is considered. This problem has a wide range of applications within
the design of telecommunication and transportation systems. A heuristic method,
based on a genetic algorithm (GA) approach, is proposed for solving the CSApHMP.
The described algorithm uses binary encoding and modified genetic operators. The
caching technique is also implemented in the GA in order to improve its effec-
tiveness. Computational experiments demonstrate that the GA method quickly
reaches optimal solutions for hub instances with up to 50 nodes. The algorithm is

also benchmarked on large scale hub instances with up to 200 nodes that are not
solved to optimality so far.

Keywords: Evolutionary computation, network optimization, graph and network

algorithms, randomized algorithms

1 INTRODUCTION

Hub location problems have wide range of application in the design of transportation
and telecommunication networks. Postal delivery systems, air or ground transporta-
tion networks, computer and satellite systems are often configured as hub networks.
In these networks, the traffic between two nodes is not shipped directly, but has

118 Z. Stanimirović

to be routed via a specified set of nodes. These nodes, denoted as hubs, serve as
intermediate switching points for traffic. By employing hubs as consolidation and
distribution centers for several nodes, it is possible to eliminate many expensive
direct connections (origin–destination) and to make the transportation flow more
efficient.

Many variants of hub location problems exist in the literature. For example,
it may be assumed that exactly p hubs have to be chosen. The non-hub nodes
may be allocated either to a single hub (single allocation scheme) or to multiple
hubs (multiple allocation scheme). The total flow through a hub node or the flow
collected at a hub can be restricted (capacitated versions). The fixed costs for
establishing hubs may also be assumed.

Hub location problems are NP-hard, with the exception of few special cases.
They are usually much harder to solve in comparison with other, non-hub loca-
tion problems. Moreover, there does not exist a general mathematical model that
describes well all hub location problems. Each hub problem has its own specific
structure: objective function, decision variables and constraints. Few additional
constraints or a slight modification of the problem structure can substantially change
the computational behavior of the designed solution approach. Therefore, there is
no general algorithm for solving all hub problems, or at least a smaller group of
them. Exact methods can not provide solutions for large-scale hub location prob-
lems which arise from practice in a reasonable amount of time. Therefore, heuristic
methods are very promising approaches for solving hub location problems. A de-
tailed review of hub location problems and solution methods for solving them can
be found in [5].

In this paper, a particular variant of the hub location problem, known as the
Capacitated Single Allocation p-Hub Median Problem (CSApHMP) is studied. This
problem deals with a network with n nodes where p hubs have to be established.
The traffic between any pair of non-hub nodes is routed via one or two hubs, and the
single allocation scheme is assumed. In this model, a limited amount of flow can be
collected in a hub (capacity restriction). The goal of CSApHMP is to minimize the
sum of the overall transportation costs in the network. The traffic in the network
consists of collection (from origin nodes to hubs), transfer (between hubs) and dis-
tribution (from hubs to destination nodes). The corresponding transportation costs
are multiplied by χ, α and δ respectively, which represent the cost per unit distance.
Generally, α is used as a discount factor to provide reduced unit costs on arcs be-
tween hubs to reflect economies of scale, so α < χ and α < δ. The CSApHMP is
NP-hard, since its uncapacitated subproblem USApHMP was proved to be NP-hard
in [16].

2 MATHEMATICAL FORMULATION

For the CSApHMP the following mixed integer linear programming formulation,
taken from [4], is used. Consider a network of n distinct locations (nodes) that

A Genetic Algorithm for the CSApHMP 119

exchange some traffic. Exactly p nodes that will serve as hubs have to be located.
Each non-hub node can be allocated to a single hub. The traffic between a pair of
nodes i and j must be routed through either one or at most two established hubs k
and l. The cost of routing a unit of flow along the path i → k → l → j is calculated
as: χ · dik + α · dkl + δ · dlj, where dij denotes the distance (in the sense of a metric)
between nodes i and j.

The following notation has been used in the mathematical formulation:

• Wij = the number of units of traffic sent from origin i to destination j,

• Γk = the capacity of a hub k,

• Oi = total flow departing from an origin i, i.e. Oi =
∑n

j=1Wij,

• Dj = total flow distributed to destination j, i.e. Dj =
∑n

i=1Wij.

The decision variables are:

• Zij = 1, if node i is allocated to hub j, 0 otherwise,

• Y i
kl = the amount of flow from origin i that is collected at hub k and distributed

via hub l.

Using the above notation, the CSApHMP can be written as:

min
n
∑

i=1

n
∑

k=1

dikZik(χOi + δDi) +
n
∑

i=1

n
∑

k=1

n
∑

l=1

αdklY
i
kl (1)

subject to:
n
∑

k=1

Zkk = p (2)

n
∑

k=1

Zik = 1 for every i = 1, . . . , n (3)

n
∑

j=1

WijZjk +
n
∑

l=1

Y i
kl =

n
∑

l=1

Y i
lk + OiZik for every i, k = 1, . . . , n (4)

Zik ≤ Zkk for every i, k = 1, . . . , n (5)
n
∑

i=1

OiZik ≤ ΓkZkk for every k = 1, . . . , n (6)

Y i
kl ≥ 0 for every i, k, l = 1, . . . , n (7)

Zik ∈ {0, 1} for every i, k = 1, . . . , n. (8)

The objective (1) is to minimize the total transportation cost. Constraint (2) en-
sures that exactly p hubs are located. Each non-hub node is allocated to a single hub,
which is guaranteed by (3). Constraint (4) represents the flow conservation equation,
while (5) ensures that hub nodes are established for every distribution/collection
step, thus preventing direct transmission between non-hub nodes. Constraint (6) is

120 Z. Stanimirović

(5,3)

A B

D

C

E

(0,0) (2,0)

(0,3)

(2,2)

(5,3)

A B

D

C

E

(0,0) (2,0)

(0,3)

(2,2)

15 13

15

16 12

15

12

Fig. 1. Hub network n = 5, p = 2, α = 0.25

imposed to restrict the amount of flow collected at a hub. Constraints (6) and (7)
reflect non-negative and binary nature of variables Y i

kl and Zik respectively.
On the left side of Figure 1 an example of a network with n = 5 nodes A, B,

C, D, E is presented. The nodes are given by their coordinates in the plane and the
corresponding distance matrix is:

D =

0 2 2
√
2 3

√
34

2 0 2
√
13 3

√
2

2
√
2 2 0

√
5

√
10

3
√
13

√
5 0 5√

34 3
√
2

√
10 5 0

.

The amount of flow that is transported from an origin-node i to a destination-node j
is Wij = 1(i, j = 0, 1, 2, 3). The incoming flow capacities Γk, k = 0, 1, 2, 3 are 16, 12,
15, 15 and 13, respectively. The optimal solution of the CSApHMP that is obtained
with parameters p = 2, χ = 1, α = 0.25 and δ = 1 is presented on the right side of
Figure 1. Hub nodes are located at B and C, non-hub node A is allocated to hub
B, while non-hub nodes D and E are allocated to hub C. The transportation costs
between every pair of nodes are: “A-B-A” 2+2 = 4, “A-B-C” 2+2·0.25 = 2.5, “A-B-
C-D” 2+2·0.25+

√
5 = 4.736, “A-B-C-E” 2+2·0.25+

√
10 = 5.662, “B-B” 0, “B-C”

2 ·0.25 = 0.5, “B-C-D” 2 ·0.25+
√
5 = 2.736 “B-C-E” 2 ·0.25+

√
10 = 3.662, “C-C”

0, “C-D”
√
5, “C-E”

√
10, “D-C-D”

√
5+

√
5 = 4.472, “D-C-E”

√
5+

√
10 = 5.398

and “E-C-E”
√
10 +

√
10 = 6.324 (hub nodes in the paths are bolded). The overall

transportation cost (objective value) is equal to 79.983.

3 GENETIC ALGORITHM

A genetic algorithm is an adaptive, global search technique that utilizes concepts
of natural adaptation and selective breeding of organisms. The basic GA scheme
is presented in Figure 2. The GA works with a population of individuals, each
representing a possible solution to a given problem. Each individual is represented

A Genetic Algorithm for the CSApHMP 121

as a string of characters (genetic code) from some alphabet. The representation is
often a binary string, but other alphabets of higher cardinality can also be used.

After the decoding of each individual, a fitness value is assigned to it, which
measures individual’s quality in the population. The selection operator favors in-
dividuals with better fitness values to reproduce more often than the worse ones.
The selected parent-individuals are subject to crossover operator. Crossover cre-
ates offspring-individuals by combining genetic codes of the parents. The result
of crossover is a structured, randomized exchange of genetic material between the
individuals, with the possibility that good solution can generate better ones. The
mutation operator performs small changes of the offspring gene’s value with some
small probability. The role of mutation is to restore the lost subregions of search
space, preventing the premature convergence of the GA.

offspring

decoded

 individuals

Evaluation

Selection of

best fitted

individuals

Crossover

parents

Population

of

individuals

Mutation

Fig. 2. Basic GA scheme

Genetic operators: selection, crossover and mutation are iteratively applied until
certain stopping criterion is satisfied and the best individual of the last generation
is considered as a solution to the problem. The stopping criterion of the GA can be
a fixed number of generations or the GA can terminate when this solution has not
been improved during a given number of iterations. Various extensions of genetic
algorithms have been developed, including new data structures for representing in-
dividuals, problem-specific genetic operators and hybridization with other exact or
heuristic methods.

The genetic algorithm approach is widely used for solving various combinato-
rial optimization problems, which include location problems such as: Simple Plant
Location Problem [11], Index Selection Problem [11], Dynamic Facility Layout Prob-

122 Z. Stanimirović

lem [7], Capacitated Cell Formation Problems with Multiple Routings [17], Periodic
Arc Routing Problem [15], Discrete Ordered Median Problem [6, 18], etc.

Genetic algorithms are also used for solving some other hub location problems:
Uncapacitated Multiple Allocation p-hub Median Problem – UMApHMP in [19],
Uncapacitated Multiple Allocation HUb Location Problem – UMAHLP in [12], Un-
capacitated Single Allocation Hub Location Problem – USAHLP in [9, 20], Unca-
pacitated Multiple Allocation p-hub Center Problem – UMApHCP in [13], Unca-
pacitated Single Allocation p-hub Median Problem – USApHMP in [14]. Although
these problems are similar by structure, their properties are substantially differ-
ent and proposed genetic algorithms for solving these problems have quite different
nature.

4 PROPOSED GENETIC ALGORITHM

4.1 Representation of the Individuals

The genetic code of an individual consists of n genes, each referring to a network
node. The first bit in each gene takes the value of 1 if the current node is a located
hub, 0 if not. Considering these bit values, the array of opened hub facilities is
formed. Remaining bits of the gene are referring to the hub that is assigned to the
current node.

If 0 < α < χ and 0 < α < δ, the optimal solution usually does not include
allocation of each origin/destination node to its nearest hub. The indices of hubs that
are closer to non-hub nodes appear often in the optimal solution, while the indices of
far away hubs are rare. For this reason, the genetic search is directed to “closer” hub
facilities, while the “distant” ones are considered with small probability. In this GA
implementation, the strategy named “nearest neighbor ordering” is used. For each
non-hub node the created array of located hubs is arranged in non-decreasing order
of their distances from the current non-hub node. The applied strategy ensures that
closer hubs have higher assigning priority to non-hub nodes, while hub nodes are
assigned to themselves by default.

Example 1. The genetic code: 00|10|10|00|00 corresponds to the optimal solution
presented in Figure 1. The first bits in each gene (0, 1, 1, 0, 0) denote established
hubs (B and C), while the remaining bits of the genes (0, 0, 0, 0, 0) show assignments.
For non-hub node A, the arranged array of hubs is B,C, with distances 2 and 2

√
2,

respectively. For non-hub node D, the arranged array of hubs is C, B, with distances√
5 and

√
13, respectively. For non-hub node E, the arranged array of hubs is also

C, B, with distances
√
10 and 3

√
2, respectively. Non-hub nodes A, D and E are

assigned to their closest established hubs (node A to hub B, nodes D and E to
hub C). Hub nodes B and C are obviously assigned to themselves.

The applied binary encoding ensures that information whether the node is hub
or not, and the node’s assignment to a hub is in the same gene. In this way, all the

A Genetic Algorithm for the CSApHMP 123

information about each node is grouped in the genetic code, which implies shorter
building-blocks. The building-block hypothesis and schema theorem [1, 2] favor both
shorter building-blocks and binary encoding, so that the applied encoding scheme
yields to effectiveness of the GA.

4.2 Objective Function

The indices of established hubs are obtained from the first bits of each gene. For each
non-hub node, the array of established hubs is arranged in non-decreasing order with
respect to distances from the current node. The index of a hub that is assigned to the
current non-hub node is obtained from the remaining part of the gene. If its value
is r, the rth hub is taken from the previously arranged array (r = 0, 1, . . . , p− 1).

Arranging the array of established hubs is performed n−p times for each indivi-
dual in every generation. This may require additional CPU time, but p is relatively
small in tested CSApHMP instances (p ≤ 20), so it does not affect the total CPU
time significantly. Although the total running time is slightly longer, the experiments
show a significant improvement by using this strategy.

After the assigning procedure described above has been performed, the objective
value is simply evaluated only by summing up the distances origin-hub, hub-hub and
hub-destination, multiplied by flows and corresponding parameters χ, α and δ.

It may happen that a non-hub node is allocated to a hub whose remaining
capacity is not enough to satisfy the node’s demand. In this case, the next hub
from the array of established hubs for the current node which satisfies the capacity
constraint is taken. If there is no such a hub we consider the individual infeasible
by setting its fitness to 0. This case is very rare in practice and it usually happens
if the sum of hub capacities is less than the overall flow in the network. So, the
infeasible individuals (in the sense of insufficient hub capacities) will be generated
in the initial population with very small probability.

The applied strategy of correcting individuals with insufficient capacities to fea-
sible ones may slightly affect the quality of the GA solution, but it preserves the
diversity of the genetic material. If all the infeasible individuals were encountered
in the population, they may become dominant in the following generations and the
algorithm might provide no solution or finish in a local optimum. If the incorrect
individuals were excluded from the population, the possibility of premature conver-
gence would rapidly increase.

For these reasons, local search heuristics generally tend to work less well for
capacitated hub problems, even for small-size problem dimensions. The capacity
constraints can make them more difficult to move through the solution space without
encountering infeasible solutions.

4.3 Genetic Operators

The GA method uses fine-grained tournament selection – FGTS [8] that is an im-
provement of the standard tournament selection. It is used in cases when the average

124 Z. Stanimirović

tournament size Ftour is desired to be fractional. In this GA implementation Ftour

is set to 5.4.

The standard crossover operator is not appropriate for the applied encoding
scheme. If this operator is applied, the parents with exactly p located hubs may
generate offspring with the number of located hubs different from p. To overcome
this problem, the standard crossover operator is modified to produce only individuals
with p established hubs.

parent1 | 0 2 | 0 1 | 1 0 | 0 0 | 1 0 | 1 0 | 0 0 |

parent2 | 0 1 | 1 0 | 0 0 | 1 0 | 0 1 | 0 1 | 1 0 |

| 0 2 | 0 1 | 1 0 | 0 0 | 1 0 | 1 0 | 0 0 |

 | 0 1 | 1 0 | 0 0 | 1 0 | 0 1 | 0 1 | 1 0 |

j i

| 0 2 | 1 0 | 1 0 | 1 0 | 0 1 | 0 1 | 0 0 | offspring1

 | 0 1 | 0 1 | 0 0 | 0 0 | 1 0 | 1 0 | 1 0 | offspring2

| 0 2 | 0 1 | 1 0 | 0 0 | 1 0 | 1 0 | 0 0 |

 | 0 1 | 1 0 | 0 0 | 1 0 | 0 1 | 0 1 | 1 0 |

j i

| 0 2 | 1 0 | 1 0 | 0 0 | 1 0 | 0 1 | 0 0 |

 | 0 1 | 0 1 | 0 0 | 1 0 | 0 1 | 1 0 | 1 0 |

Fig. 3. Modified crossover operator for n = 7, p = 3

The crossover operator is simultaneously tracing through genetic codes of the
parents from right to left searching the gene position i where the parent1 has “1-bit”
and parent2 “0-bit” on the first bit position (see Figure 3). Then the individuals
exchange whole genes at the found gene position i. The same process is simultane-
ously performed starting from the left side of parents’ genetic codes. The operator
is searching the gene position j where the parent1 has “0-bit” and parent2 “1-bit”
on the first bit position, and all genes at the found position are exchanged. The
described process is repeated until j ≥ i.

The applied crossover operator preserves the feasibility of individuals, since the
number of located hubs in both offsprings remains unchanged compared to their
parents. The crossover is performed with the rate pcross = 0.85, which means that
around 85% of individuals take part in producing offsprings, while in approximately
15% of cases no crossover takes place and the offsprings are identical to one of the
parents.

Offsprings generated by crossover operator are subject to mutation. The muta-
tion operator is performed by changing a randomly selected gene in the genetic code.
Considering the applied encoding scheme (i.e. different nature of bits according to
their position in each gene), it is obvious that the mutation rate should differ for the
first bit and the remaining bits in each gene. Moreover, for the bits on the second,
third, fourth. . . bit position in each gene the mutation of the bits has different im-
pact, since they are arranged according to the “nearest neighbor ordering” strategy
(see [14] for detailed explanation). Since mutation impact for these bits increases

A Genetic Algorithm for the CSApHMP 125

by the factor of 2, it is reasonable to decrease the corresponding mutation rates by
the same factor.

Basic mutation rates used in the GA implementation are:

• 0.4
n

for the bit on the first position,

• 0.1
n

for the bit on the second position.

The next bits in the gene have repeatedly two times smaller mutation rate:
(

0.05
n
,

0.025
n

, . . .
)

.

During the GA execution, it is possible that (almost) all individuals in the
population have the same bit value at certain bit position. These bits are called
frozen (see Figure 4). If the number of frozen bits is l, the search space becomes
2l times smaller, and the possibility of premature convergence increases rapidly. The
selection and crossover operators can not change any frozen bit value, and the basic
mutation rate is often insufficiently small to restore the lost sub-regions of the search
space. If the basic mutation rate is increased significantly, genetic algorithm behaves
like a random search. For that reason, basic mutation rates are increased, but only
for frozen bits. When compared to basic mutation rates, frozen bits are mutated at
2.5 times higher rate

(

1,.0
n

instead of 0.4
n

)

if they are at the first position of the gene,

and at 1.5 times higher rate
(

0.075
n

, 0.0375
n

, . . .
)

otherwise.

| 0 2 | 0 1 | 1 0 | 0 0 | 1 0 | 0 2 | 0 2 |1 0|

| 0 2 | 0 1 | 1 0 | 0 0 | 1 0 | 1 0 | 0 2 |0 0|

| 1 2 | 0 1 | 0 2 | 0 1 | 1 0 | 1 0 | 0 1 |0 1|

| 0 2 | 1 0 | 0 0 | 0 0 | 1 0 | 1 0 | 0 2 |0 0|

| 0 2 | 0 1 | 1 0 | 0 0 | 1 1 | 0 0 | 0 1 |1 0|

| 0 2 | 0 1 | 1 0 | 0 0 | 1 0 | 1 0 | 0 2 |0 0|

f f f f

Fig. 4. Frozen bits in GA reprezentation for n = 8, p = 3

The number of mutated ones and zeros at the first bits of genes is counted and
compared for each individual. In case these numbers are not equal, it is necessary to
mutate additional leading bits of the genes. By equalizing the number of mutated
ones and zeros on the leading positions, the mutation operator preserves exactly
p located hubs.

126 Z. Stanimirović

4.4 Other GA Aspects

The initial population numbers 150 individuals and it is randomly generated. Ac-
cording to the applied “nearest neighbor ordering” strategy and minimization ob-
jective function, the “closer” hubs are favored for each non-hub node. Therefore,
while generating the initial population, the first bit and the remaining ones of each
genetic code segment are generated with different probabilities.

Each individual in the initial population is generated as follows. The first bit
in each gene takes the value of 1 with the probability of p

n
. The second bit in each

gene is generated with the probability of 1.0
n
, while the following bits take the value

of 1 with two times smaller probability than the previous ones
(

1
2n
, 1
4n
, 1
8n
, . . .

)

.
The applied strategy ensures that in the initial population each non-hub node is
frequently assigned to its closest/closer hub and rarely to a distant hub. For more
detailed explanation see [14].

Although the probability of p

n
for generating first bits in each gene leads to

establishing p hubs, it may be slightly different in practice. If an individual has
a number of ones in the genetic code that is different from p (denoted as k, k 6= p),
it is corrected by adding/erasing |p − k| hubs going backwards from the end of
the genetic code. In this way, the initial population becomes feasible. Genetic
operators implemented in the GA preserve the fixed number of hubs and keep
them distinct. Therefore, all individuals in the following generations remain fea-
sible.

If an individual with the same genetic code repeats in the population, its ob-
jective value is set to zero. The selection operator disables duplicated individuals
in entering the next generation. This strategy helps in preserving the diversity of
genetic material and in keeping the algorithm away from the local optima trap. The
individuals with the same objective value, but different genetic codes may dominate
in the population after certain number of iterations. If their codes are similar, it
may cause a premature convergence of the GA. For that reason, the appearance of
these individuals is limited to a constant Nrv. In this GA implementation Nrv is
set to 40. One third of the population is replaced in every generation, excluding
the best 100 individuals that directly pass to the next generation. These elite in-
dividuals preserve highly fitted genes of the population. Their objective values are
calculated in the first generation only.

The main purpose of caching is to avoid the re-calculation of objective va-
lues for individuals that appear again during the GA run. The evaluated ob-
jective values are stored in a hash-queue data structure, which is created by
using the Least Recently Used (LRU) caching strategy. When the same code is
obtained again, its objective value is taken from the hash-queue table, instead
of re-calculating its objective function. The implemented caching technique im-
proves the GA running time (see [10, 11]). The number of cached objective
values in the hash-queue table is limited to Ncache = 5 000 in our GA implemen-
tation.

A Genetic Algorithm for the CSApHMP 127

5 COMPUTATIONAL RESULTS

In this section the computational results of the proposed GA method and compar-
isons with the results obtained by using CPLEX 8.1.0 Optimizer are given. The
GA implementation was coded in C programming language and tested on an AMD
Sempron 2.4+ at 1 597MHz with 256MB RAM memory under Linux (Knoppix 3.7)
operating system. The experiments using CPLEX were carried out on an Intel
1.8GHz with 256MB RAM. Both methods were tested on a set of ORLIB instances
taken from [3].

The AP (Australian Post) data set is derived from the study of postal delivery
system. The largest instance includes n = 200 nodes (representing postcode dis-
tricts) with parameters χ = 3, α = 0.75 and δ = 2. Smaller size instances, with
n = 10, 20, 25, 50, 100, nodes are obtained by aggregating the largest initial instance.
The number of hubs (mail sorting/consolidation centres) in tested instances is up
to 20. Two types of capacities are considered: tight (T) and loose (L) that give
tightly and loosely capacitated problems, respectively.

The GA parameters mentioned in previous sections showed to be robust and
appropriate for CSApHMP. The algorithm stops if the maximum number of genera-
tions has been reached, which is Ngen = 5 000. The algorithm also terminates if the
best individual or the best objective value remained unchanged throughNrep = 2 000
successive generations, respectively. On all instances that were tested, this criterion
allows the GA to converge to high-quality solutions. Only minor improvements in
the quality of final solutions can be expected when prolonging the runs, which can
be seen from Tables 1 and 2. The GA method was run 20 times on each AP instance.

The optimal solutions, obtained by CPLEX solver on smaller size AP instances
(n ≤ 50), are presented in Table 1. In the first column the instance’s dimensions
n, p and the capacity type of problem are given. For example, 40L5 refers to AP
instance with n = 40 nodes and p = 5 hubs to be located, while “L” stands for
loose capacities on hubs. The next two columns contain the optimal solution of the
current instance obtained by CPLEX and the corresponding running time t[s] in
seconds. If no feasible solution exists for the current instance, inf is written. In the
next column the number of iterations niter is given.

The remaining columns of Table 1 contain the results of the proposed GA. The
best value of GA is given in the fifth column of Table 1, with mark opt in cases when
at least one of the twenty runs of the GA reaches optimal solution known in advance.
If GA gave no solution for a particular instance, a dash “-” is written. The average
time (in seconds) needed to detect the best value is written in the t[s] column, while
ttot[s] represents the average total time (in seconds) that the algorithm needed to
finish.

The solution quality in all 20 executions (i = 1, 2, . . . , 20) is evaluated as a per-
centage gap named agap = 1

20

∑20
i=1 gapi, where gapi = 100 soli−Opt .sol

Opt.sol
is evaluated

with respect to the optimal solution Opt .sol , or the best-known solution Best .sol ,
i.e. gapi = 100 soli−Best .sol

Best .sol
in cases when no optimal solution is found (sol i represents

the GA solution obtained in the ith execution). Standard deviation of the average

128 Z. Stanimirović

Inst. CPLEX GA
name Solution t[s] Niter best t[s] ttot[s] gen gap[%] σ[%] eval cache[%]

10L2 167 493.06497 0.01 120 opt 0.005 0.368 2 013 0.000 0.000 3 564.8 96.5
10L3 136 008.12591 0.18 290 opt 0.004 0.500 2 010 0.000 0.000 17 984.5 82.1
10L4 122 396.06809 0.21 322 opt 0.010 0.519 2 022 0.000 0.000 18 871.5 81.4
10L5 91 105.370684 0.17 262 opt 0.015 0.637 2 037 0.000 0.000 24 984.8 75.5
10T2 198 060.79558 0.10 299 opt 0.004 0.364 2 018 0.000 0.000 4 102.9 95.9
10T3 166 219.04818 0.22 299 opt 0.004 0.491 2 015 0.000 0.000 18 148.3 82.0
10T4 137 344.52962 0.19 368 opt 0.009 0.508 2 015 0.000 0.000 19 029.5 81.1
10T5 122 903.55479 0.42 983 opt 0.052 0.673 2 151 0.001 0.003 30 402.3 71.8
20L2 172 816.68972 0.55 558 opt 0.025 0.629 2 053 0.000 0.000 11 259.1 89.0
20L3 151 533.08378 2.45 1 481 opt 0.028 0.986 2 041 0.000 0.000 28 273.5 72.3
20L4 135 624.88360 2.85 1 797 opt 0.024 1.077 2 029 0.000 0.000 30 892.3 69.6
20L5 123 130.09462 4.41 3 043 opt 0.136 1.488 2 180 0.000 0.000 41 536.8 62.2
20L10 81 870.548582 2.13 1 359 opt 0.050 1.926 2 038 0.013 0.056 46 326.6 54.6
20T2 194 077.66234 1.16 712 - 0.000 0.001 1 0.000 0.000 150.0 0.0
20T3 165 290.85005 4.51 3 982 opt 0.090 0.978 2 175 0.497 0.259 32 762.0 69.9
20T4 139 415.28208 1.70 1 010 opt 0.037 1.031 2 054 0.000 0.000 31 449.9 69.4
20T5 123 453.01027 1.42 800 opt 0.029 1.262 2 031 0.000 0.000 36 050.0 64.6
20T10 846 61.065508 1.62 1 093 opt 0.044 1.698 2 040 0.000 0.000 45 794.0 55.2
25L2 177 869.30164 1.92 1 079 opt 0.065 0.837 2 114 0.000 0.000 17 481.0 83.5
25L3 155 256.32315 4.03 1 380 opt 0.063 1.322 2 078 0.000 0.000 33 468.4 67.9
25L4 139 197.16909 7.38 2 813 opt 0.107 1.562 2 126 0.137 0.217 40 405.8 62.0
25L5 123 574.28868 4.73 1 908 opt 0.153 1.983 2 158 0.007 0.021 47 502.7 56.0
25L10 81 870.548582 2.12 1 359 opt 0.114 2.636 2 068 0.000 0.000 47 681.3 54.0
25T2 inf 2.22 2 777 inf 0.000 0.003 1 0.000 0.000 150.0 0.0
25T3 195 500.88511 9.88 4 792 opt 0.065 1.144 2 096 0.518 0.460 36 549.2 65.2
25T4 168 226.97385 20.66 12 684 opt 0.122 1.390 2 159 0.223 0.066 39 530.6 63.4
25T5 145 318.64862 10.25 5 881 opt 0.341 1.989 2 392 0.386 0.942 54 966.8 54.2
25T10 99 700.96103 4.78 2 719 opt 0.088 2.244 2 063 0.000 0.000 44 977.8 56.5
40L2 178 602.58220 10.21 2 134 opt 0.148 1.495 2 169 0.000 0.000 27 426.0 74.8
40L3 161 641.90679 73.36 7 695 opt 0.147 2.475 2 102 0.000 0.000 43 089.8 59.1
40L4 145 931.30224 60.22 6 402 opt 0.476 3.222 2 322 0.000 0.000 53 733.7 53.7
40L5 135 908.09368 110.11 13 131 opt 0.472 3.742 2 264 0.012 0.056 55 454.3 51.1
40L10 104 631.51100 108.21 12 933 opt 0.642 5.397 2 238 0.045 0.137 58 528.5 47.8
40T2 inf 25.77 6 845 inf 0.000 0.001 1 0.000 0.000 150.0 0.0
40T3 179 795.59780 34.29 4 434 opt 0.520 1.954 2 277 5.376 11.836 47 284.8 50.1
40T4 155 041.20503 35.33 4 379 opt 0.473 2.846 2 363 0.000 0.000 53 030.1 55.2
40T5 141 412.38851 29.03 3 197 opt 0.169 3.290 2 093 0.106 0.376 50 690.9 51.6
40T10 107 089.58661 72.65 9 848 opt 0.953 5.450 2 389 0.066 0.296 62 842.3 47.5
50L2 178 548.98256 41.42 3 467 opt 0.401 2.281 2 345 0.000 0.000 35 509.4 69.8
50L3 161 008.12675 200.26 9 813 opt 0.322 3.638 2 163 0.000 0.000 48 118.4 55.6
50L4 145 578.81661 334.50 23 473 opt 0.409 4.217 2 184 0.000 0.000 52 359.7 52.1
50L5 132 651.43955 190.22 10 346 opt 0.522 5.114 2 201 0.054 0.242 57 019.3 48.3
50L10 102 706.85734 365.61 30 055 opt 1.559 8.339 2 424 0.284 0.356 67 992.6 44.0
50T2 inf 97.06 12 813 inf 0.000 0.002 1 0.000 0.000 150.0 0.0
50T3 185 779.91419 563.40 51 631 opt 0.889 3.106 2 764 1.130 1.413 61 518.3 55.5
50T4 153 334.47291 292.06 24 079 opt 1.725 5.130 2 956 0.654 1.008 70 842.1 52.1
50T5 139 682.21196 630.55 51 642 opt 0.775 5.165 2 323 0.080 0.267 60 252.3 48.2
50T10 104 470.15626 441.52 32 852 opt 1.772 8.165 2 516 0.354 0.412 69 817.2 44.6

Table 1. Results of CPLEX and GA on smaller instances

gap σ =
√

1
20

∑20
i=1 (gapi − agap)2 is also presented. The last two columns are re-

lated to caching: eval represents the average number of evaluations, while cache
displays savings (in percent) achieved by using the GA caching technique. Since
the hash-queue table is being searched and updated in O(1) time, the percentage of
cache savings is very similar to running-time savings in practice. In average, instead
of 250 000 evaluations of the objective function, the algorithm used between 44.0
and 95.9 percent of the values stored in the hash-queue table.

A Genetic Algorithm for the CSApHMP 129

For example, 200T20, the (average) number of the GA generations is 4 389 (see
column gen in Table 2). Since the initial population numbers 150 individuals and
50 non-elite individuals are replaced in each GA generations, it means that the
algorithm would need 1 · 150 + 4 388 · 50 = 218 550 objective function evaluations.
As can be seen from the eval column in Table 2, the GA performs 149 937 objective
function evaluations (in average), that is 68.239 percent of the initial number of
evaluations (218 550). It means that 31.707 percent of the objective function values
are obtained from the hash-queue-table.

Moreover, instead of extensive use of the time-consuming local search, the GA
method includes the “nearest neighbour ordering” search, that does not require
additional CPU time, but improves GA performance significantly. The GA improves
the solutions somewhat more slowly in the beginning of the search, but it continues
to improve the solutions steadily, and finally reaches high quality solutions.

As can be seen from Table 1, for all smaller size AP instances the proposed GA
quickly reached optimal solutions that were previously obtained by CPLEX, with
the exception of one instance 20T2, where GA gave no solutions. In three cases,
25T2, 40T2, 40T2, 50T2, neither CPLEX nor GA obtained a feasible solution.

The computational experiments that have been carried out with CPLEX solver
showed that CPLEX can not provide solutions on larger AP instances in reasonable
CPU time. On these instances the CPLEX did not terminate after few day’s com-
putation, though it found some upper bounds in most cases. Therefore, only the
results of the proposed GA on large-scaled AP instances are presented in Table 2.
These results are given in the same way as in Table 1.

The GA concept cannot prove optimality and an adequate finishing criteria
that will fine-tune solution quality does not exist. Therefore, as the column ttot in
Table 1 shows, the algorithm runs through additional ttot − t time (until finishing
criteria are satisfied), although it already reached its best solution. For technical
reasons, the GA and CPLEX could not be tested on the same platform, so exact
comparisons can not be carried out. According to the SPEC-fp2000 benchmarks
(www.spec.org), computers AMD Sempron 2.4+ at 1 597MHz and Intel 1.8GHz
have average (base) speedup values 641 and 669, respectively. Considering this, we
can assume that two platforms mentioned above have very similar performances
and some descriptive comparisons of CPU times for smaller AP instances can be
made. Comparing the t[s] column in Table 1 for the CPLEX and the GA, it can
be seen that the GA concept reaches optimal solution in significantly shorter CPU
time compared to CPLEX. After all, the total running time of the proposed GA is
reasonably short, even for practical size AP instances that could not be solved by
CPLEX (see the ttot column of Table 2).

6 CONCLUSIONS

In this paper, an evolution-based approach for solving CSApHMP is proposed. The
problem has large practical real-world application in network design. The described

130 Z. Stanimirović

Inst. GAbest t[s] ttot[s] gen gap[%] σ[%] eval cache[%]

100L2 189 351.552203 3.386 9.238 3 062 0.042 0.075 63 514.5 58.6
100L3 165 714.455236 5.937 16.604 3 069 0.006 0.019 81 070.6 47.2
100L4 146 197.756744 4.573 16.566 2 711 0.014 0.035 75 511.4 44.4
100L5 137 232.521623 5.046 18.872 2 678 0.087 0.162 79 411.3 40.8
100L10 107 207.722491 10.969 29.531 3 076 0.353 0.523 95 923.6 37.7
100L15 91 285.263160 12.915 36.091 3 052 0.573 0.330 96 059.8 37.1
100L20 81 034.594907 15.808 43.294 3 084 0.609 0.530 97 763.2 36.7

100T4 156 486.756614 5.772 15.498 3 103 0.487 0.513 86 243.9 44.4
100T5 143 567.783356 8.336 21.672 3 205 0.718 0.946 94 624.1 41.0
100T10 109 633.407766 13.528 32.119 3 332 1.191 0.777 103 623.7 37.8
100T15 92 635.948394 11.458 34.640 2 925 0.596 0.387 92 245.7 37.0
100T20 82 425.427067 15.370 42.901 3 050 0.689 0.498 96 779.6 36.6

200L2 182 459.254460 30.658 58.915 3 927 0.024 0.059 92 531.9 52.9
200L3 162 887.031354 43.092 93.141 3 655 0.002 0.004 105 562.4 42.3
200L4 147 814.839498 50.356 107.518 3 650 0.024 0.041 111 076.5 39.2
200L5 140 563.766161 54.518 118.703 3 615 0.262 0.158 114 759.5 36.6
200L10 110 400.539154 102.042 182.995 4 262 0.861 0.689 142 324.0 33.3

200L15 94 525.394936 123.002 223.727 4 347 0.611 0.412 147 403.2 32.2
200L20 85 290.576635 143.854 261.820 4 342 0.548 0.328 148 658.9 31.6

200T4 158 161.970642 90.691 115.712 4 886 0.368 0.512 145 076.5 40.7
200T5 143 422.425191 97.293 139.989 4 672 1.702 1.235 146 129.9 37.5
200T10 112 056.605241 152.022 204.915 4 919 2.505 1.374 162 483.5 34.0

200T15 96 448.953395 128.705 223.062 4 452 1.378 1.514 149 817.9 32.7
200T20 86 496.090607 154.482 260.028 4 389 1.040 0.551 149 937.3 31.7

Table 2. Results of GA on larger instances

GA method uses a binary encoding of the individuals and an appropriate objective
function. The initial population is generated to be feasible and genetic operators
adapted to the CSApHMP are designed and implemented. The applied “nearest
neighbor ordering” strategy directs GA to promising search regions. Genetic oper-
ators preserve exactly p located hubs in the individuals of every generation. The
idea of frozen bits is used to increase the diversity of genetic material. The caching
GA technique additionally improves the computational performance of the algo-
rithm.

The computational experiments on the well-known AP hub data set demonstrate
the robustness of the proposed algorithm with respect to the solution quality and
running times. Computational results show that the GA reaches all optimal solutions
obtained by CPLEX for smaller problem dimensions. The proposed GA method also
provided solutions for capacitated large-scale AP instances with more than 50 nodes
that were unsolved up to now. The presented computational results clearly indicate
the usefulness of the proposed GA approach.

Hence, our future work could also concentrate on the parallelization of the GA
and its hybridization with exact methods. Based on the results, we also believe the

A Genetic Algorithm for the CSApHMP 131

GA approach has a potential as useful metaheuristics for solving other capacitated
hub problems and more complex hub location models.

Acknowledgement

This research was partially supported by Serbian Ministry of Science and Techno-
logical Development under the grant No. 144 007. The author is grateful to Jozef
Kratica for his useful comments and suggestions on a draft version of this paper.

REFERENCES

[1] Bäck, T.—Fogel, D.B.—Michalewicz, Z.: Basic Algorithms and Operators.
Evolutionary Computation 1, Institute of Physics Publishing, Bristol-Philadelphia,
2000.

[2] Bäck, T.—Fogel D. B.—Michalewicz, Z.: Advanced Algorithms and Ope-
rators. Evolutionary Computation 2, Institute of Physics Publishing, Bristol-
Philadelphia, 2000.

[3] Beasley, J. E.: Obtaining Test Problems via Internet. Journal of Global Optimiza-
tion, Vol. 8, 1996, pp. 429–433.

[4] Campbell, J. F.: Integer Programming Formulations of Discrete Hub Location
Problems. European Journal of Operational Research, Vol. 72, 1994, pp. 387–405.

[5] Campbell, J. F.—Ernst, A.—Krishnamoorthy, M.: Hub Location Problems.
H. Hamacher and Z. Drezner (Eds.): Facility Location: Applications and Theory,
Springer-Verlag, Berlin-Heidelberg, 2002, pp. 373–407.

[6] Dominguez-Marin, P.—Hansen, P.—Mladenovic, N.—Nickel, S.: Heuris-
tic Procedures for Solving the Discrete Ordered Median Problem. ITWM Bericht,
Fraunhofer Institut fur Tecno-und Wirtschaftsmathematik (ITWM), Kaiserslautern,
Germany, Vol. 46, 2003.

[7] Dunker, T.—Radons, G.—Westkamper, E.: Combining Evolutionary Compu-
tation and Dynamic Programming for Solving a Dynamic Facility Layout Problem.
European Journal of Operational Research, Vol. 165, 2005, pp. 55–69.

[8] Filipović, V.: Fine-Grained Tournament Selection Operator in Genetic Algorithms.
Computing and Informatics, Vol. 22, 2003, pp. 143–161.

[9] Abdinnour-Helm, S.—Venkataramanan, M.A.: Solution Approaches to Hub
Location Problems. Annals of Operations research, Vol. 78,1998, pp. 31–50.

[10] Kratica, J.: Improving Performances of the Genetic Algorithm by Caching. Com-
puters and Artificial Intelligence, Vol. 18, 1999, pp. 271–283.

[11] Kratica, J.: Parallelization of Genetic Algorithms for Solving Some Np-Complete
Problems (Ph.D. thesis in Serbian). Faculty of Mathematics, University of Belgrade,
2000.

[12] Kratica, J.—Stanimirović, Z.—Tošić, D.—Filipović, V.: Genetic Algorithms
for Solving Uncapacitated Multiple Allocation Hub Median Problem. Computing and
Informatics, Vol. 22, 2005, pp. 1001–1012.

132 Z. Stanimirović

[13] Kratica, J.—Stanimirović, Z.: Solving the Uncapacitated Multiple Allocation

P-Hub Center Problem by Genetic Algorithm. Asia-Pacific Journal of Operational
Research, Vol. 23, 2006, pp. 425–437.

[14] Kratica, J.—Stanimirović, Z.—Tošić, D.—Filipović, V.: Two Genetic Al-

gorithms for Solving the Uncapacitated Single Allocation P-Hub Median Problem.
European Journal of Operational Research, Vol. 182, 2006, pp. 15–28.

[15] Lacomme, P.—Prins, C.—Ramdane-Cherif, W.: Evolutionary Algorithms for

Periodic Arc Routing Problems. European Journal of Operational Research, Vol. 165,
2005, pp. 535–553.

[16] Love, R.F.—Moris, J.G.—Wesolowsky, G.: Facility location: Models and
methods. Publication in Operations Research, North-Holland, New York, Vol. 7, 1988.

[17] Nsakanda, A.L.—Diaby, M.—Price, W.L.: Hybrid Genetic Approach for Solv-
ing Large-Scale Capacitated Cell Formation Problems With Multiple Routings. Eu-
ropean Journal of Operational Research, Vol. 171, 2006 No. 3, pp. 1051–1070.

[18] Stanimirović, Z.—Kratica, J.—Dugošija, D. J.: Genetic Algorithms for Solv-
ing the Discrete Ordered Median Problem. European Journal of Operational Re-
search, Vol. 182, 2007, pp. 983–1001.

[19] Stanimirović, Z.: An Effcient Genetic Algorithm for the Uncapacitated Multiple
Allocation P-Hub Median Problem. Control and Cybernetics, Vol. 37, 2006, No. 3,
pp.669-692.

[20] Topcuoglu, H.—Corut, F.—Ermis, M.—Yilmaz, G.: Solving the Uncapaci-
tated Hub Location Problem Using Genetic Algorithms. Computers and Operations
Research, Vol. 32, 2005, pp. 967–984.

Zorica Stanimirovi� received her B. Sc. degrees in mathema-
tics (2000), M. Sc. in mathematics (2004) and Ph.D. in mathe-
matics (2007) from the University of Belgrade, Faculty of Mathe-
matics. Since 2008 she is Assistant Professor at the Faculty of
Mathematics and Vice-Dean for science and research at the Fa-
culty of Mathematics. Her research interests are facility loca-
tion problems, hub location problems, combinatorial optimiza-
tion and genetic algorithms.

