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Abstract. The paper presents baseline and complex part-of-speech taggers applied
to the modified corpus of Frequency Dictionary of Contemporary Polish, annotated
with a large tagset. First, the paper examines accuracy of 6 baseline part-of-speech
taggers. The main part of the work presents simple weighted voting and complex
voting taggers. Special attention is paid to lexical voting methods and issues of
ties and fallbacks. TagPair and WPDV voting methods achieve the top accuracy
among all considered methods. Error reduction 10.8% with respect to the best
baseline tagger for the large tagset is comparable with other author’s results for
small tagsets.
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1 INTRODUCTION

Part of speech (POS) tagging is a key topic for areas like natural language processing
(NLP), information extraction, and machine translation, being the first step in a long
chain of complicated text transformations. POS tagging is considered to be well
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understood and almost resolved problem for languages that need few tags for their
depiction. Application of POS tagging to languages described with large tagsets is
far more difficult because of

1. apparently fewer algorithms available and tagging tools usable,

2. lower accuracy values reached by standard algorithms,

3. memory requirements often exceeding resources of ordinary machines,

4. time demands considerably higher than in applications to small tagsets,

what may be unacceptable from the point of view of a user [15].
The possible remedy for insufficient accuracy is to combine a few baseline algo-

rithms into one system attaining higher accuracy. The paper examines accuracy of
6 baseline algorithms applied to morphosyntactic tagging of Polish. Next, simple
weighted voting taggers and complex voting methods are investigated. The paper
pays attention to lexical voting methods, which have not been explicitly considered
before. Up to our knowledge it is the first so exhaustive arrangement of results of
baseline and combined taggers for the Polish language.

We investigate behaviour of weighted voting algorithms proposed in literature,
and our lexical methods when applied to Polish – a language described with large
tagsets. Polish and all Slavic languages belong to the family of inflective languages,
while English or French are analytic languages. A small tagset is sufficient for
description of words of analytic languages. Due to inflection, significantly higher
number of tags is required for Slavic languages. Tagging with large tagsets is much
more difficult and achieved tagging accuracy is smaller than in case of tagging with
small tagsets. The focus of the paper is to show that in spite of these difficulties
collective methods working on a large tagset achieve error reduction rate similar to
collective methods working on a small tagset.

The paper takes also deep insight into ties and fallbacks effects, negligible when
combined methods are employed to languages with small tagsets, but present in
high degree in case of applications to large tagsets.

The paper operates on the following concepts. A morphosyntactic tag is a set
of attributes, attributes describe morphological categories. The tagset is referred
to as a complex tagset (due to its large size and presence of many morphological
categories). A simple tagset is also considered, where POS is present but other, more
specific morphological categories are ignored. A token is the smallest entity being
subject of tagging, corresponding approximately to the general notion of a word,
but certain shorter segments may be also recognised as tokens. A word segment is
a token containing at least one letter or digit.

The rest of the work is organised as follows. Section 2 gives overview of baseline
tagging algorithms with special focus on methods investigated in the paper. Vot-
ing methods are presented in Section 3. Details of the conducted experiments are
described in Section 4. Section 5 provides and discusses results of the experiments.
Conclusions close the paper. The accuracy of cited methods for English is reported
on the Penn Treebank.
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2 OVERVIEW OF BASELINE TAGGING ALGORITHMS

Up to now many approaches to the issue of POS tagging have been proposed. They
can be divided between statistical and rule based algorithms.

The rule based methods take into account a wide context, what is desirable in
the case of languages containing long-distance syntax dependencies.

Memory-based learning (a.k.a. lazy learning, example-based learning) taggers
acquire examples from training corpora, which are later used in the tagging
process [7].

Transformation-based error-driven learning (a.k.a. transformation-based or
Brill [2]) taggers are the most popular type of taggers not based on probabilistic
models. The advantage of the exploited method is a possibility of supplying and
modifying rules by linguists. Beside the training and test corpora the method
requires an additional patch corpus.

Rules of striking off. The method is a refinement of transformation-based tag-
ging [3]. In the first stage each token is assigned many tags. Next, special rules
eliminate (strike off) redundant tags.

Manual finite state rules. In this approach linguistic distributional rules are con-
verted to finite-state machines [30]. Expert knowledge may be required to write
the rules.

Statistical algorithms map a sequence of tokens into a sequence of tags with a prob-
ability model, which describes occurrence of the most probable sequence of tags for
a given sequence of tokens. Generative methods model joint probability (e.g. hid-
den Markov model) whereas discriminative ones model conditional probability (e.g.
conditional random fields, support vector machines, boosting).

Matrix of collocational probabilities indicates the relative likelihood of co-oc-
currence of all pairs of tags. The matrix, innovation of the CLAWS algo-
rithm [19], was the first step towards statistical algorithms in POS tagging
area. The CLAWS algorithm has, however, exponential time complexity and
is of historical significance now.

Hidden Markov Model (HMM) taggers are most suitable for POS tagging of the
analytic languages due to their weak inflection. The most probable sequence of
tags is computed with the Viterbi algorithm and the learning of tagger parame-
ters done with the Baum-Welch algorithm. A gentle introduction to the HMM
methodology is given in [23].

Maximum entropy taggers aim at maximizing the entropy function by joining
the HMM approach with selection of binary features, reflecting dependency in
the training corpus. The method was introduced into the NLP area by A. Rat-
naparkhi [24]. Applying the maximum entropy method to inflecting languages
comes with difficulties because of usually large tagset sizes and intra dependen-
cies occurring in such languages.



206 M. Kuta, W. Wójcik, M. Wrzeszcz, J. Kitowski

Hajič method. The Hajič tagger disambiguates results provided by independent
morphological analyser. The Hajič method originates from the maximum en-
tropy approach. In order to avoid computational complexity of the maximum
entropy approach a naive Bayesian assumption is made. In exchange, a sig-
nificantly higher number of features can be examined. The algorithm achieves
satisfactory results for inflecting language (like Czech [10, 11]).

Dependency networks use explicitly context of both preceding and following tag
to determine a tag of the current token. It stays in contrast to traditional
models, where unidirectional (usually left to right) approach is taken. The
drawback of the method is that a found sequence of tags is not guaranteed to
be the maximum likelihood one. System presented in [29] has 97.24 % accuracy
on the Penn Treebank WSJ.

Conditional Random Fields (CRFs) [18] are of recently growing interest exam-
ple of an undirected graphical model that avoids label bias. The form of an
applied potential function is inspired by the maximum entropy approach. The
CRF trained on 50 % of the Penn Treebank is reported to achieve 95.73 % accu-
racy and claimed to outperform the HMM [18].

A POS tagging task may be understood as a pattern recognition problem, thus
algorithms from machine learning area are applicable, too.

Support Vector Machines(SVM). The SVM is a supervised machine learning
algorithm for binary classification, but N -class problems are converted to binary
ones without much trouble.

Boosting. The AdaBoost (Adaptive Boosting) is a metaalgorithm for constructing
a ‘strong’ classifier, H(x) = sgn(

∑

t αtht(x)), as a linear combination of simple
‘weak’ classifiers ht(x). The MI version of AdaBoost, applied to POS tagging of
the Penn Treebank corpus achieves 96.72 % accuracy [1].

Decision trees taggers estimate transition probabilities with decision trees, which
are built with the help of concepts from information theory like information gain
or gain ratio. The representatives of tree building algorithms are CART, ID3,
C4.5 and C5.0 – the newer and commercial version of the C4.5 algorithm. The
TreeTagger [26], making use of ID3, is reported with 96.36 % accuracy on the
Penn Treebank.

Neural networks as a POS tagging tool have been subject of several researches.
Reported results for the English language are comparable with the HMM ap-
proach. A slow training process may be the disadvantage of the method. Among
others, the following architectures have been explored: multilayer network with
the backpropagation training algorithm (96.22 % accuracy) [27], network of lin-
ear separators with the Winnow update algorithm (97.20 % accuracy) [25], voted
perceptron based training (97.07 % accuracy) [6].

Genetic programming. A tagger making use of genetic programming has been
proposed in the context of building a tagger of Polish [21].
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2.1 Exploited Algorithms

In the paper we first evaluate a selected set of algorithms, discussed below in more
detail. These algorithms are ‘building blocks’ to create and investigate complex
methods. The results of baseline algorithms are also important in their own right if
confined to usaged of the (best) base tagger.

Hidden Markov Model. Given a sequence of tokens, w1, . . . , wn, the HMM tag-
ger assigns a sequence of tags, T = (t1, . . . , tn), according to the formula

T̂ = arg max
T

n
∏

i

p(wi|ti) · p(ti|ti−1, . . . , ti−N), (1)

where p(wi|ti) is the conditional probability of occurrence of a word wi given a tag ti
occurred and p(ti|ti−1, . . . , ti−N) is the conditional probability of occurrence of the
tag ti given a tag sequence ti−1, . . . , ti−N previously occurred. The Markov model
of N th order is called the (N + 1)-gram model.

Maximum entropy. The model assumes a set of binary features, fj , is defined
on the combination of a tag ti and its context c. The probabilistic model is built
from family of models

p(ti, c) =
1

Z
exp

(

∑

j

λjfj(ti, c)

)

, (2)

where p(ti, c) stands for joint distribution of tags and contexts and 1/Z is a nor-
malisation factor in order that p(·, ·) forms the probability function.

The aim of the training procedure is to select reliable features, fj, and to compute
their weights, λj .

Memory-based learning. These algorithms are distinguished by definition of
similarity of examples, the way the instances are stored in memory and the way the
search through memory is conducted.

During the learning process memory-based taggers store in memory a set of
examples (ti, ci), where ti denotes the tag and ci its context. Given a token w
in context c, the memory-based tagger assigns it a tag tk, such that the distance
between c and ck is minimal.

The most important similarity metrics used are: overlap metric, modified value
difference metric, Jeffrey divergence metric, and dot-product metric. The features
are weighted with such metrics as information gain or chi-squared. The examples
can be stored in memory as tables, trees or even self-organising maps.

A good representation of memory-based learning technique is the IGTree algo-
rithm, which uses information gain metric and tree representation of stored examples
with special heuristic of its searching.
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Transformation-based error-driven learning. The tagger starts with assign-
ing a trivial sequence of tags to a given tokenised text. The target sequence of
tags is determined by applying a series of transformations. Each transformation,
F , is a rule in the form: ‘Replace value of tag t with value y if current context c
fulfils condition φ.’ The core of learning process is the algorithm for finding suitable
transformations.

Support vector machines. The SVM maps input vectors from R
n to a higher

dimensional space where a linear hyperplane is constructed, which separates posi-
tive examples from negative ones with the maximal margin. The mapping is done
with kernel functions, of which linear, polynomial, radial basis (RBFs) and sigmoid
functions are the most used. The SVM approach to POS tagging has been addressed
in [9] with accuracy of 97.16 % for English and 96.89 % for Spanish achieved.

Tree tagger. Tree tagger is based on Markov models and exploits additionally
decision trees to improve its work [26]. The tag sequences are computed with the
slightly modified Equation (1). To predict probability parameters the maximum
likelihood estimation is used. In order to solve data sparseness problem, TreeTag-
ger applies decision tree (thus reducing of the number of contextual parameters)
instead of smoothing probabilities. The tree is built from a training set with the
ID3 algorithm and weighted information gain.

Table 1 presents evaluated baseline algorithms and their implementations used
within the research.

Tagger Algorithm Tagger name Abbreviation

T1 HMM TnT [5] TnT

T2 Maximum entropy MXPost [24] MXP

T3 Transformation based fnTBL [8] fnTBL

T4 Memory based MBT [7] MBT

T5 SVM SVMTool [9] SVM

T6 Decision trees TreeTagger [26] TrTg

Table 1. Taggers used in experiments with their abbreviations employed in the paper

3 COLLECTIVE METHODS

Instead of inventing new baseline methods, which would attain higher accuracy due
to larger internal complexity there is an alternative way of proceeding. As different
methods represent different approaches and formalisms, they should manifest diver-
sity and scattering (measured with complementarity, comp, values) in committed
errors. Consequently, selection of the correct tag among those proposed by all the
baseline taggers improves the whole tagging process, as we suppose that majority
of taggers should be correct at the same time.
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Independent baseline taggers are combined as component taggers in parallel
(simple voting methods) or sequential manner (stacked methods) to form one com-
plex tagging system. Most of voting and stacked methods were contributed and
then evaluated on English by Brill [4] and van Halteren et al. [13, 14].

3.1 Simple Weighted Voting Methods

Each base tagger proposes an output tag or tags, according to its internal algorithm.
Each tag is suggested with certain weight from range [0, 1], values of weights are fixed
within training process of a voting tagger. The tag which receives the highest number
of votes is selected as an output tag of a whole combined system. Voting taggers
are distinguished by a way vote strength of their baseline taggers is calculated.

Let us introduce the necessary measures. Assuming the reference test corpus
contains n tokens w1, . . . , wn, a token wi is annotated in the corpus with a tag ti
(1 ≤ i ≤ n), a tagger A guesses for a token wi a tag tAi , the accuracy of the tagger
A is defined as follows:

accuracy =
#correctly tagged tokens

#all tokens
=

∑n

i=1 δ(tAi , ti)

n
, (3)

where δ is the Kronecker delta function.
If a tagger B guesses a tag tBi , the complementarity of the tagger B to the

tagger A, comp(B|A), is given by [4]:

comp(B|A)
df
= 1 −

#common errors of taggers A and B

#errors of tagger A

=

∑n

i=1(1 − δ(tAi , ti)) · δ(tBi , ti)
∑n

i=1(1 − δ(tAi , ti))
. (4)

Given a tag X, the tag precision and tag recall of the tagger A on the tag X
can be calculated according to formulas:

precX
df
=

#tokens tagged and annotated with X

#tokens tagged with X

=

∑n

i=1 δ(ti, X) · δ(tAi , X)
∑n

i=1 δ(tAi , X)
,

(5)

recallX
df
=

#tokens tagged and annotated with X

#tokens annotated with X

=

∑n

i=1 δ(ti, X) · δ(tAi , X)
∑n

i=1 δ(ti, X)
.

(6)

We propose below some new measures and on that basis introduce new simple
voting tagging methods.
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Given a word form W , the lexical accuracy on the word form W , lexical tag
precision, and lexical tag recall on the word form W and the tag X, are defined for
the tagger A in a following way:

lexAccW
df
=

#tokens W correctly tagged

#tokens W

=

∑n

i=1 δ(ti, t
A
i ) · δ(wi,W )

∑n

i=1 δ(wi,W )
,

(7)

lexPrecW,X
df
=

#tokens W tagged and annotated with X

#tokens W tagged with X

=

∑n

i=1 δ(ti, X) · δ(tAi , X) · δ(wi,W )
∑n

i=1 δ(tAi , X) · δ(wi,W )
,

(8)

lexRecallW,X
df
=

#tokens W tagged and annotated with X

#tokens W annotated with X

=

∑n

i=1 δ(ti, X) · δ(tAi , X) · δ(wi,W )
∑n

i=1 δ(ti, X) · δ(wi,W )
.

(9)

Simple weighted voting methods and measures for computing their vote strength
are summarised in Table 2. The simplest Majority method assigns always one vote to
each component tagger. Vote strength may be calculated more precisely and depends
on: overall accuracy (TotalPrecision method), or proposed tag (TagPrecision and
PrecisionRecall methods). Within PrecisionRecall method each tagger supports also
tags suggested by remaining taggers.

We extended the idea of precise calculation of vote strength and proposed addi-
tional methods, where relevant measures depend also on the word form of the token
being currently tagged. Vote strength of these new ‘lexical’ methods depends on:
tagged word form (LexAccuracy), proposed tag and tagged word form (LexPrecision,
LexPrecisionRecall). The LexPrecisionRecall method uses also lexical equivalent of
the tag recall measure.

3.2 Complex Weighted Voting Methods

Complex weighted voting methods represent a family of stacked methods. Stacked
methods are second order methods – output of baseline taggers serves as a training
material for a second order tagger. The specific feature of stacked methods, com-
pared to simple voting methods, is that they can choose a tag proposed by minority
of baseline taggers or even a tag from outside the set of tags proposed by baseline
taggers. We examine further 3 representatives of complex weighted voting methods:
van Halteren’s TagPair, Weighted Probability Distribution Voting (WPDV) and our
modification of TagPair – LexPair.
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Voting method Tag X Tag Y

Majority 1 0
TotalPrecision accuracy 0
TagPrecision precX 0
PrecisionRecall precX 1− recallY
LexAccuracy lexAccW 0
LexPrecision lexPrecW,X 0
LexPrecisionRecall lexPrecW,X 1− lexRecallW,Y

Table 2. Vote strength of a component tagger in various simple voting methods; W stands
for a currently tagged token, X stands for a tag proposed by a component tagger,
Y (Y 6= X) represents each tag proposed by opposition

TagPair. Let T = {T1,T2, . . . ,Tk} be the set of baseline taggers, |T | = k. Given
k baseline taggers,

(

k

2

)

combination taggers (pairs) are created. A combination
tagger Cij (1 ≤ i < j ≤ k) corresponding to a pair of baseline taggers (Ti,Tj) votes
each tag tagT, for which the probability P (tagT | tagi, tagj) is nonzero, where tagi,
tagj stand for tags proposed by baseline taggers Ti,Tj. This probability specifies at
the same time the weight of vote of the tagger Cij for the tag tagT and is estimated
from the tuning corpus. If tags tagi, tagj have never been proposed simultaneously
by taggers Ti and Tj in the tuning data, the probability P cannot be computed for
any tagT (data sparseness problem). In such case a fallback strategy is undertaken –
smoothed estimate of P , i.e., the value 1

2
(P (tagT | tagi)+P (tagT | tagj)), constitutes

a vote of Cij .
The vote of the tagger TagPair for a tag tagT is a sum of votes of components Cij

for that tag. The TagPair method is formalized in Algorithm 1.

LexPair. Similarly to weighted voting methods, we extend the idea of TagPair and
propose the LexPair method. LexPair defines a vote of a combination tagger Cij

for a tag tagT to be equal P (tagT | tagi, tagj, tok), provided the current token is tok
and P is nonzero.

In analogical way, the value 1
2
(P (tagT | tagi, tok) + P (tagT | tagj , tok)) defines

a vote strength for a tag tagT if a pair tagi, tagj has never been encountered in the
tuning data as a simultaneous proposition of taggers Ti and Tj for a token tok. The
LexPair method is defined formally in Algorithm 2.

Weighted Probability Distribution Voting (WPDV). This method is van
Halteren’s extension of TagPair. The TagPair method takes combination taggers
being pairs of taggers, i.e., elements Cij such that Cij ∈ 2T and |Cij | = 2. WPDV
removes cardinality restriction and admits any element from 2F as a combination
tagger, where F denotes a set of features, F = {f1 = v1, . . . , fm = vm}, fi –
feature, vi – value. The set F is a generalization of T , but for our aims it is
sufficient to assume that F = T . A component tagger of N -th order, Ci1...iN =
(Ti1, . . . ,TiN) votes tag tagT with value wN · P (tagT | tagi1 , . . . , tagiN ), where wN
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Algorithm 1 The TagPair method

foreach tagT ∈ tagset do
vote[tagT ] := 0

end for
foreach pair of taggers C do
foreach tagT ∈ tagset do
if P (tagT | tagi1, tagi2) is defined then
vote[tagT ]+=P (tagT | tagi1, tagi2)

else if P (tagT | tagi1) is defined and P (tagT | tagi2) is defined then
vote[tagT ]+=

1
2
(P (tagT | tagi1) + P (tagT | tagi2))

else
choosedTag := Majority

goto finish

end if
end for

end for
choosedTag := arg max

tagT∈tagset
vote[tagT ]

finish: return choosedTag

Used variables have the following meaning:

C – a component tagger composed from baseline taggers Ti1,Ti2,

tagi1, tagi2 – tags proposed by baseline taggers Ti1,Ti2,

Majority – function of majority voting among tags suggested by base taggers with
random determination of ties.

denotes a scaling factor. Choosing good values of weights wN is not a straightforward
task. One possibility is to assume wN = N !, in this way high order component
taggers are prevented from being dominated by low order elements when summing
votes [12, 14].

To prevent exponential explosion of the number of component taggers with the
growing size of T , only components consisting of maximally 4 taggers were consid-
ered.

In contrast to TagPair, WPDV avoided fallbacks to simpler models. Instead,
cutoff strategy was applied. If necessary probability could not be estimated, vote of
relevant component tagger was set to 0. Another applied improvement was a fre-
quency threshold (set to 2 in our work), which meant that a feature had to occur
at least 2 times in the tuning data to be taken into vote computations [12].

A formal scheme for choosing a tag for a token tok with WPDV is given in
Algorithm 3.

Let us consider the computational complexity of the WPDV tagger. The train-
ing phase is performed only once. Its complexity equals O(s|T |), where s is the
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Algorithm 2 The LexPair method

foreach tagT ∈ tagset do
vote[tagT ] := 0

end for
foreach pair of taggers P do
foreach tagT ∈ tagset do
if P (tagT | tagi1, tagi2, tok) is defined then
vote[tagT ]+=P (tagT | tagi1, tagi2, tok)

else if P (tagT | tagi1, tok) is defined and P (tagT | tagi2 , tok) is defined then
vote[tagT ]+=

1
2
(P (tagT | tagi1 , tok) + P (tagT | tagi2 , tok))

else
choosedTag := Majority

goto finish

end if
end for

end for
choosedTag := arg max

tagT∈tagset
vote[tagT ]

finish: return choosedTag

number of tokens in the training set, as in this phase we gather data about all
component taggers in one place. The computational complexity of tagging one
token equals O(s2|T |). If we constrain to component taggers belonging to a sub-
set D, |D| = d, as we do in the experiments, then the complexity reduces to
O(s2|D|) = O(s2d).

4 EXPERIMENTS SETUP

For experiments we applied the modified corpus of Frequency Dictionary of Con-
temporary Polish [16], which is an improved version of the corpus [31], and can be
obtained from [32]. The m-FDCP corpus is annotated with the modified version of
the IPI PAN tagset [22], containing 9 morphological categories. Five themes: scien-
tific texts, news, essays, fiction and plays, are represented in the corpus in balanced
manner.

The main parameters of the m-FDCP corpus, training and test sets are given in
Table 3 after [16].

At first the whole corpus was divided into training and test corpora in 90 %/10 %
ratio and baseline taggers T1, . . . , T6 have been trained on the training set and
applied to tagging the test set. Next the sort of 9-fold validation procedure was
additionally applied to the training corpus to create tuning corpora (one tuning
corpus for each of 6 baseline taggers) in the following way. The training corpus
was split into 9 equal parts. Each part, standing for 10 % of the whole corpus, was
tagged by each baseline tagger, trained on the remaining 8 parts. Finally 9 parts
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Algorithm 3 The WPDV method

foreach tagT ∈ tagset do
vote[tagT ] := 0

end for
foreach combination tagger C ∈ D do
foreach tagT ∈ tagset do
if P (tagT | tagi1, . . . , tagik) is defined and freq(C) ≥ cutoff then
vote[tagT ]+=w(C) · P (tagT | tagi1 , . . . , tagik)

end if
end for

end for
if freq(C) < cutoff for all combination taggers C ∈ D then
choosedTag := Majority

goto finish

end if
choosedTag := arg max

tagT∈tagset
vote[tagT ]

finish: return choosedTag

Variables have the following meaning:

C – a component tagger composed from baseline taggers Ti1, . . . ,Tik,

D – a subset of 2T (D ⊆ 2T ) chosen to moderate exponential explosion of the num-
ber of component taggers. A component tagger belonging to space D consists
of maximally 4 baseline taggers.

tagi1, . . . , tagik – tags proposed by baseline taggers Ti1, . . . ,Tik,

w(C) – weight assigned to a tagger C which should take into account amount of
information contributed by the tagger C. In our experiments w(C) = |C|!.

freq(C) – the number of occurrences of a combination (tagi1, . . . , tagik) in the tun-
ing set,

cutoff – parameter of algorithm, default value set to 2 in the experiments,

Majority – function of majority voting among tags suggested by base taggers with
random determination of ties.

tagged by a baseline tagger were merged to form its tuning corpus, all in all we got
6 tuning corpora.

The tuning corpora and training corpus are identical if only tokens are taken
into account and tags are ignored. The tuning corpora served as training sets for
complex taggers.

For experiments with baseline taggers the SGI Altix 3700 SMP supercomputer,
located at the ACC Cyfronet AGH-UST, and equipped with 128 1.5 GHz Intel Ita-
nium 2 processors, 256 GB RAM, was utilized. Collective methods were tested under
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Training Test Full
90% 10% 100%

tokens 592 729 65 927 658 656
word segments 496 907 55 139 552 046
sentences 36 601 4 211 40 812
different tokens 87 097 19 557 92 872

Simple tagset

tagset size 30 30 30
ambiguous tokens, % 26.15 26.19 26.16
mean token ambiguity 1.44 1.43 1.44

Complex tagset

tagset size 1 191 724 1 243
ambiguous tokens, % 47.76 47.65 47.74
mean token ambiguity 3.12 3.12 3.12

Table 3. Main parameters of the m-FDCP corpus

a personal computer with 2.0 GHz Intel Pentium M 760 processor, 1 GB RAM. Java
heap size was set to 128 MB.

5 EXPERIMENTAL RESULTS AND IMPLEMENTATION ISSUES

All tables and data below refer to the test set containing 65 927 tokens (cf. Table 3).

5.1 Baseline Taggers

We used 6 flexible implementations of main tagging algorithms as baseline taggers,
which can be adopted to virtually any language. Table 4 presents accuracy of
baseline taggers and is an extension of results given in [16, 17] for 4 and 5 taggers.

5.2 Voting Taggers

Each voting method has been investigated in three setups:

1. as composed from all 6 base taggers,

2. composed from 5 best baseline taggers, (all components except the MBT tagger
for the simple tagset and all components except the SVM tagger for the complex
tagset),

3. composed from 4 best baseline taggers (all components except the MBT and
TrTg taggers for the simple tagset and all components except the SVM and
TrTg taggers for the complex tagset).

If the simple tagset is considered, the presented setup stays in contradiction
with Table 4, as accuracy values for selection the best component taggers came
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TnT MXP fnTBL MBT SVM TrTg

Simple tagset

All tokens 96.20 96.30 96.51 95.74 96.74 95.73
Known tokens 96.98 97.01 97.51 97.10 97.52 96.82
Unknown tokens 88.65 89.43 86.89 82.60 89.14 85.19
Ambiguous tokens 89.50 91.09 91.36 89.94 91.36 88.94
Word segments 95.46 95.57 95.83 94.91 96.10 94.89
Word segments with known tags 96.94 96.79 97.55 97.08 97.60 96.73
Word segments with unknown tags 0.00 28.21 3.85 0.00 0.00 0.00
Unknown word segments 88.65 89.43 86.90 82.60 89.15 85.20
Sentences 61.48 62.15 63.71 58.54 65.16 58.35

Complex tagset

All tokens 86.33 85.00 86.79 82.31 73.54 82.16
Known tokens 88.97 87.53 89.76 85.75 81.12 85.98
Unknown tokens 60.86 60.55 58.09 49.06 0.23 45.18
Ambiguous tokens 78.66 78.71 80.34 72.48 63.44 72.89
Word segments 83.66 82.07 84.21 78.85 68.36 78.66
Word segments with known tags 90.73 87.44 90.27 86.58 80.69 86.86
Word segments with unknown tags 0.00 29.84 30.50 0.66 0.00 0.93
Unknown word segments 60.86 60.55 58.09 49.05 0.23 45.18
Sentences 28.95 26.88 29.87 22.51 12.04 21.25

Table 4. Accuracy of baseline taggers trained on 90% of the m-FDCP corpus, with respect
to different categories [%]

from evaluation on the tuning corpora rather than test set (to avoid learn on a test
set effect). To keep clarity in the shown results (Table 5, see [17] for preliminary
results), the accuracy of all voting methods has been presented with ‘4 best’ setup
only, except the Majority method, which has been reported with all 3 setups.

Theoretical accuracy, defined as percentage of tokens for which at least one base
tagger proposed a correct tag, determines the upper limit of accuracy that simple
weighted voting methods may attain. The limit of theoretical accuracy may be,
however, exceeded (at least in theory) by combined voting methods. The values of
theoretical accuracy stay in accordance with Table 6, which presents votes distribu-
tion with the Majority method.

Not every combined tagger outperforms the best single tagger, what is the case
of the Majority tagger composed of all 6 base taggers for the complex tagset. De-
creasing the number of components may increase accuracy of a voting method,
a phenomenon distinctly observed for Majority. Our experiments showed also that
substituting TrTg with SVM (that is with the tagger inferior to TrTg if limited to
the complex tagset), leaving other components unchanged, may lead to improved
performance of combined taggers.

An attempt to phrase the possibility of tagging improvement by combining se-
veral taggers is the complementarity measure (Table 7, being an extension of results
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Method
Simple tagset Complex tagset

Accuracy ∆Err Accuracy ∆Err

Theoretical 98.58 94.00
Majority 96.86 ± 0.01 3.7 86.14 ± 0.04 −4.9
5-Best Majority 96.87 ± 0.01 4.0 86.87 ± 0.03 0.6
4-Best Majority 96.89 ± 0.02 4.6 87.19 ± 0.04 3.0
TotalPrecision 96.96 6.8 88.03 9.4
TagPrecision 96.91 5.2 87.41 4.7
PrecisionRecall 96.95 6.4 87.21 3.2
LexAccuracy 96.97 7.1 87.89 8.3

LexPrecision 96.82 2.5 87.15 2.7
LexPrecisionRecall 96.82 2.5 86.99 1.5
TagPair 97.02 8.6 88.22 10.8
LexPair 96.84 ± 0.01 3.1 86.99 ± 0.03 1.5
WPDV 97.02 8.6 88.20 10.7

Table 5. Accuracy (with its standard deviation) and error rate reduction, ∆Err (in relation
to the best base tagger) of voting taggers [%]

from [17]). The higher the complementarity, the bigger hope the combined system
performs better than its components alone. It remains, however, unclear how many
and which taggers should be selected on the basis of the complementarity measure
to attain the best results.

Voting scheme Simple tagset Complex tagset

All taggers agree and are correct 92.30 67.04
A majority is correct 4.22 17.73

Correct tag present but tied 0.69 2.92
A minority is correct 1.38 6.31
The taggers vary but all are wrong 0.26 4.17
All taggers agree but are wrong 1.16 1.83

Table 6. Voting schemes of the Majority tagger [% of the test set, for which given voting
scheme occurred]

Among simple weighted voting taggers the highest accuracy is achieved by the
LexAccuracy tagger for the simple tagset and by the TotalPrecision tagger for the
complex tagset.

The TagPair and WPDV complex voting taggers outperformed simple voting
taggers reaching peak accuracy values: for the simple tagset 97.02 % accuracy and
8.6 % error rate reduction (WPDV), for the complex tagset 88.22 % accuracy and
10.8 % error rate reduction (TagPair). At this stage it cannot be stated in a definite
manner which tagger is the best, as accuracy differences between two taggers were
modest. In turn, arrangement with 5 or 6 base taggers revealed more prominent
supremacy of WPDV.
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H
H
H
H

HH
B

A
TnT MXP fnTBL MBT SVM TrTg

TnT – 35.72 31.29 39.21 25.74 27.28
MXP 37.32 – 36.72 46.58 30.30 44.16
fnTBL 36.84 40.35 – 41.03 25.65 44.62
MBT 31.80 38.55 28.03 – 23.79 39.04
SVM 36.16 38.55 30.47 41.60 – 45.01
TrTg 18.22 35.60 32.25 38.89 28.07 –

a) simple tagset

H
H
H
H

HH
B

A
TnT MXP fnTBL MBT SVM TrTg

TnT – 39.13 32.28 39.25 55.39 37.22
MXP 33.20 – 33.25 43.19 56.42 42.27

fnTBL 34.56 41.22 – 41.07 54.05 42.39
MBT 21.39 33.01 21.09 – 39.96 28.66
SVM 13.62 23.12 7.94 10.17 – 10.73
TrTg 18.04 31.32 22.17 28.03 39.80 –

b) complex tagset

Table 7. Complementarity, comp(B|A), of taggers trained on 90% of the m-FDCP cor-
pus [%]

The LexPair, another member of complex voting taggers family, did not turn
out useful with its low accuracy (the lowest accuracy for the simple tagset) and
complicated architecture.

5.2.1 Time Complexity

To make matters more complicated, WPDV demands a lot of tagging time, which
scales badly (i.e. exponentially) with the growing number of base taggers.

Table 8 shows registered time of training and tagging with WPDV tagger (ex-
actly user time in time command terminology). The real time was 10 % longer. With
the change of the number of base taggers from 4 to 6 time of tagging augmented
from 12 to 90 minutes. One solution to alleviate the problem may be reimplemen-
tation of the tagger in a more effective language than Java.

Simple tagset Complex tagset
no. of base taggers Train Tagging Train Tagging

4 best taggers 5.9 5.1 8.9 7 · 103

5 best taggers 7.0 17.9 10.8 23 · 103

6 taggers 8.3 87.8 12.5 53 · 103

Table 8. Training and tagging time with the WPDV tagger [s]
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5.3 Ties and Fallbacks Issues

When dealing with complex methods we had to cope with two main issues: ties and
data sparseness.

The Majority method had no training phase and suffered only from ties, which
were resolved in a random manner. This introduced some bias to results, which was
taken into account by running the method 50 times and providing mean accuracy
and its standard deviation.

The TotalPrecision tagger is the most regular method with no data sparseness
problem (the only extra parameters needed during tagging are accuracy values of
baseline taggers) and almost no ties (accuracy values almost always take different
real number, what makes tie pattern extremely hard to encounter).

As TotalPrecision is highly regular and at the same time achieves high accuracy,
we decided that this is the method the remaining simple voting taggers fallback to,
both in case of data sparseness and ties. Irregular cases accounted for 9.5 %–13.9 % of
tokens for lexical methods, and were negligible for TagPrecision and PrecisionRecall
methods (for detailed characteristic concerning fallbacks of simple weighted method
see Table 9).

Method Simple tagset Complex tagset

TagPrecision 0 43 (42 + 1)
PrecisionRecall 0 49 (42 + 7)
LexAccuracy 6 287 (6 178 + 109) 7 211 (6 178 + 1 033)
LexPrecision 6 606 (6 571 + 35) 9 145 (8 875 + 270)

LexPrecisionRecall 6 583 (6 571 + 12) 9 001 (8 875 + 126)

Table 9. Number of fallbacks of weighted voting methods to the TotalPrecision method
[total number of fallbacks (fallbacks due to data sparseness + fallbacks due to data
ties)]

The problems of data sparseness and ties of LexPair and TagPair were tackled in
the following way. Data sparseness was overcome by computing required probabili-
ties according to smoothed formulae, accessible from less data (fallback to smoothed
probabilities). If simplified formulae were still not enough, final fallbacks to the Ma-
jority tagger were undertaken. All the ties (both at main, smoothed probability,
and at Majority level) were resolved in a random manner.

The TagPair tagger, the most regular complex voting method, manifests very
few ties and probability smoothing determines almost all cases of data sparseness
without need of additional fallbacks to the Majority tagger.

The LexPair tagger demands precise data about simple tokens, what is paid
with the largest amount of fallbacks among all investigated taggers, accounting
from 11 % (simple tagset) to 20 % (complex tagset) of tagged tokens. Moreover,
the overwhelming number of fallbacks had to be resolved ultimately by calls to
the Majority tagger, as less thorough data were still unavailable. Due to the high
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number of ties (esp. for the complex tagset) and random bias introduced thereby,
the accuracy of LexPair was reported as a mean of 50 subsequent runs of the tagger.

The component taggers of WPDV operate on conditional probabilities, P (tagT |
tagi1, . . . , tagiN ), of a tag, tagT, provided an N -tuple occurred, which are sensitive
to data sparseness problem. To avoid numerous chains of fallbacks the cutoff stra-
tegy was admitted, taking over 5 % of cases for the complex tagset. No additional
fallbacks to Majority and practically no ties occurred.

The interesting feature of LexPair, TagPair and WPDV methods is the ability
of assigning a tag different from the tags proposed by the taggers T1, . . . ,Tk. It is
not only a theoretical possibility – in one third of cases (LexPair) or nearly 100 %
of cases (TagPair, WPDV) such external tags were proposed and in several hundred
cases indeed won.

More detailed insight into the number of ties and data sparseness cases for
complex voting taggers is given in Table 10.

Pattern Simple tagset Complex tagset

external tag proposed 54 411 65 311
external tag wins 0 319
ties 0 7
probability smoothing fallbacks 18 1 096
majority fallbacks 0 42

a) TagPair

Pattern Simple tagset Complex tagset

external tag proposed 15 736 24 754
external tag wins 107 599
ties 300 1 785

probability smoothing fallbacks 7 234 12 927
majority fallbacks 7 070 10 998

b) LexPair

Pattern Simple tagset Complex tagset

external tag proposed 65 927 65 378
external tag wins 1 407
ties 0 2
cutoff fallbacks 102 3 532
majority fallbacks 0 0

c) WPDV

Table 10. Characteristics of complex voting taggers, [number of cases]

5.4 Split Methods

To give full view of possibilities of various tagging algorithms we adjoin results of
thematic split and attribute split models [17, p. 910] in Table 11.
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The split methods disturb the distribution of tags over tokens in order to get
new, smoother distributions, which would be easier predictable by a tagger. This is
achieved by dividing a training corpus into smaller, thematic parts (thematic split
approach) or by dividing a complex tagset into a few simple, pairwise disjoint tagsets
(attribute split approach).

The split methods are discussed separately in [17].

Tagger Thematic 18%/2% Attribute

split uniform split

Simple tagset

TnT 95.49 94.82 –
MXP 94.99 94.46 –
fnTBL 95.16 94.64 –
MBT 94.57 93.80 –
SVM 95.75 94.93 –
TrTg 94.86 94.09 –

Complex tagset

TnT 83.28 83.26 81.73
MXP 80.54 79.22 82.55
fnTBL 81.39 80.92 81.73
MBT 78.84 78.03 81.00
SVM 68.26 67.69 84.06
TrTg 78.91 78.59 80.65

Table 11. Accuracy of the thematic split model – average accuracy (arithmetic mean) of
all thematic parts, accuracy of taggers trained on the uniform set, accuracy of the
attribute split model [%]

6 CONCLUSIONS

We conducted a series of experiments, requiring preparation of test, tuning and
training corpora.

The SVM tagger achieves the highest, state-of-the-art accuracy among the base-
line methods for the simple tagset, and fnTBL yields both the highest overall accu-
racy and sentence accuracy for the complex tagset.

Values of theoretical accuracy show that there is still room for improvement of
collective methods.

The LexAccuracy and TotalPrecision taggers achieve the highest accuracy (for
the simple and complex tagset) among simple weighted methods. The above results
indicate that it is important to examine the lexical methods on other languages.
The lexical methods should perform even better for English, as then they operate
on weakly inflecting word forms and should gather more reliable estimations of
accuracy on a word form.
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The TagPair and WPDV taggers reach the highest accuracy among all collective
taggers. WPDV shows characteristics dissimilar from other baseline and complex
taggers – its training time is short while tagging is long. Low tagging speed touching
12 words/sec puts WPDV at a disadvantage in case of applications demanding online
processing of large text parts.

Gained error rate reduction equal to 10.83 % is similar to the results communi-
cated by Brill and Wu [4] (10.4 %) or Mihalcea [20] (11.6 %), although lower than
van Halteren’s 19.1 % [13]. Our work refers to Polish, while the cited authors per-
formed experiments for English. Tagging Polish and Slavic languages is more diffi-
cult because of large tagsets used. The above results show that error rate reductions
achieved with voting taggers are similar, irrespective of size of a tagset.

Depending on the voting method, the growth of the number of component base-
line taggers may lead to increase or decrease of the accuracy. There is no one overall
dependance, valid for all voting methods.
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224 M. Kuta, W. Wójcik, M. Wrzeszcz, J. Kitowski

[21] Piasecki, M.—Gawe l, B.: A Rule-Based Tagger for Polish Based on Genetic

Algorithm. Proceedings of the Intelligent Information Processing and Web Mining
Conference, pp. 247–255, Gdańsk, Poland, June 13–15, 2005.
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