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Abstract. Context data is important information for catching the behaviors of
applications in a pervasive space. To effectively store huge amount of data, tree-
like layered storage architecture is proposed, where the leaf nodes collect data from
sensing devices. In order to integrate data from mobile devices, the related leaf
nodes that get data from the same device should upload and store the data to
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the host node. This paper presents a deep study of the data storage problem and

proposes a global algorithm GHS and an online algorithm DHS to dynamically select
the host node, which reduces the communication cost significantly. This paper also
gives the theoretical and experimental analysis of these algorithms, which shows
both GHS and DHS are correct and effective.

Keywords: Host selection, distributed storage, pervasive space

1 INTRODUCTION

With the development of mobile devices and wireless communication, pervasive com-
puting becomes a hot spot in both academic and industry areas. In a pervasive
computing environment, sensing and monitoring equipments are deployed to collect
context data, which is used to recognize user activities, collect resource status, etc.
These devices (e.g. body sensors, RFID tags, wireless cameras) are small, cheap and
widely deployed. Based on them, applications can track or predicate the locations
and status of objects. For example, any object in the physical world can be marked
by an RFID tag with a global unique ID and they can be connected with each
other to be a network called “Internet of Things” [2]. SpotON [1] utilizes the RFID
technology to locate an object by computing the strength of signals from several
base stations. Body Sensor Network (BSN) is discussed in [2] to implement smart
homes. Furthermore, some context-aware system can dynamically change their be-
haviors to adapt the changing of the environment by sensing the context, and related
technology is proposed to achieve it effectively. [3]

Currently, the memory size of sensor devices is becoming larger and the storage-
centric sensor network also has been widely discussed [4, 5, 6, 7], which argues that
some of the real time data should be stored locally in the sensing devices. However,
even in such a network, the sensor node cannot restore all the context data, they
have to push the historical data to the servers from time to time. In the meantime,
in order to synthetically analyze the system status, we need to integrate the context
from different servers. In order to effectively manage the huge amount of data, the
layered data storage approach is proposed and widely discussed, where several data
servers are organized in a tree-like architecture and each leaf node collects context
data from a number of sensing devices within its communication domain.

In such an architecture, only the leaf nodes communicate directly with the sens-
ing devices and one sensing device sends context data to one leaf node at a certain
time point. Then, the context data will be uploaded to the up-layer nodes based on
some policies [7]. However, several types of sensing devices such as body sensors and
RFID tags are moving with the attached objects. Because of the communication
areas of these devices are limited, the context data generated by them would be
sent to the leaf nodes that are closed to the devices, i.e., one mobile device may
send data to different nodes as it moves on. In a simple layered architecture, to
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integrate the context data generated from the same device, we have to upload the
data to the data server that can cover all the leaf nodes which have communicated
with the device. Figure 1 is an example of the storage system. As the device moves,
the nodes 11, 12 and 5 may maintain part of context data from this sensing device.
Because only node 0 could cover all these three nodes, the data integration has to
be implemented on the root (node 0).
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Fig. 1. The layered data storage architecture

Generally, a mobile device usually moves among a certain domain and commu-
nicates with the corresponding leaf nodes in this domain. For example, RFID tag
attached with a student usually communicates with the readers in classrooms, dor-
mitories, and cafeterias. If we choose a host node that is close to these leaf nodes to
integrate the context data, it may reduce communication cost. Furthermore, in the
traditional simple layered architecture, as the mobile device moves to a new domain
by accident, the integrate host node may be changed.

In this paper, we present a deep study of the distributed context data storage
for mobile sensing devices and propose host selection algorithm to evaluate and
select a host that would reduce the communication cost, which is an extension of
the paper [8]. The main contributions are:

1. we present a deep study of the layered data storage architecture and give the
data storage and query policies;

2. we present a centralized algorithm GHS to choose the host;

3. an on-line dynamic host selection algorithm DHS is proposed to adapt for a more
flexible situation;

4. we verify the performance of the host selection algorithms in both theoretical
and experimental analysis.
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The rest of this paper is organized as follows. Section 2 presents some related
work. Section 3 gives a brief introduction of the system including the context data
storage and query. Section 4 is the detailed description of the global host selection
algorithm and proves its correctness. Section 5 gives the dynamic host selection
algorithm DHS. Section 6 shows the simulation results and discusses the related
issues. Section 7 concludes the paper.

2 RELATED WORK

In a pervasive environment, sensing devices such as RFID tags, sensors are widely
deployed. How to effectively store and query context data is a challenge for huge
amount of context data management.

Gonzalez proposes a new warehousing model that preserves object transitions
while providing significant compression and path-dependent aggregates [9]. In [10],
an EPC encoding scheme using bitmap data type is presented to compress the
storage of EPC tag collections.

A good data storage framework is a good method to improve the performance.
Paper [11] divides framework into four categories: unstructured P2P, structured
P2P, metadata integration centralized and data integration centralized architec-
ture. In supply chain management, EPC global [12], an industry driven standard
group raises three layers of data exchange standards: Physical Object Exchange
Standards, Infrastructure Standards for Data Capture and Data Exchange Stan-
dard. Intra-enterprise data exchange follows the infrastructure standards to de-
fine the interaction interfaces for data access of application. Following the data
exchange standard, inter-enterprise data exchange relies on EPC Discovery Ser-
vices, ONS (Object Naming Service) and other core services. Paper [13] also
proposes a query processing technique with combination of P2P to improve data
sharing performance in tracking and tracing. Moreover, [14, 15] present data ex-
change by web services. In vehicle tracking application, [16] presents HERO (Hie-
rarchy Exponential Region Organization), in which hierarchy structure with re-
strict location updating policy is built up, to ensure real time and network traffic
needs.

Most works are designed for specific applications. However, data repository
framework for one application does not fit for the others due to specific patterns
in specific applications. For example, the transport of goods in supply chain is
sequentially delivered from manufacturers, distributors and retailers, while vehicle
runs randomly in the whole city. Web services for data exchange used in supply
chain do not work well for vehicle tracking, and vice versa.

Currently, the storage centric sensor network is proposed to store part of the
data in the local node and upload the rest of the data to the upper node. The upper
layered node also restores part of the data in its local area and uploads the rest to
the upper node till the root node. This kind of storage strategy is just a tree-like
data storage architecture. However, these works focus on the data extract policy
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and integrate all the context data in the root which makes the root be the bottleneck
of the system.

This paper presents a deep study of layered data storage problem and investi-
gates the host node selection problem to effectively restore the context data.

3 SYSTEM OVERVIEW

3.1 Layered Data Storage Architecture with Dynamic Host

In order to monitor the status of the pervasive computing environment, the sensing
devices are widely deployed to collect the context data and send the context data to
the server which is the leaf node in the layered context data storage system. Then,
the data will be uploaded to the up-layer servers with a certain policy which is
related to different applications. It is worth mentioning that the tree structure is an
overlay storage framework, where each node could be matched to one or more real
data servers. Some mobile devices which have more power and memory also could
be a server node.

In this paper, we propose a dynamic host selection strategy that selects the
“closest” host for the device, instead of the node covering all the related leafs. Here,
the “closest” means the host is close to the most hot spots of the sensing device.
In Figure 1, we may select node 9 as the host if the device always sends data to
node 11 and 12 while only few data is sent to node 5.

3.2 Data Storage and Query Based on Dynamic Host

Once the host for one device is selected, it is necessary to inform the ancestor until
the root. All the data from this device should be transformed to its host node.

1) Context Data Collection. In the layered storage system, all the sensing de-
vices only contact with the leaf nodes and send context data to them. Because
both sensing device and leaf node have certain communication areas, so each
device may communicate with few certain leaf nodes at a time. In this paper,
we assume that the communication area of all the leaf nodes can cover the whole
system, so that all sensing devices can communicate with at least one leaf node
at a time. If the sensing device can communicate with more than one leaf nodes
at a time, it will choose the best one based on the communication quality. Once
the communication between a pair of devices and leaf node is set up, the device
will periodically send context data to the leaf node. Each leaf node maintains
a data frequency list (DFL), which records the number of data received from
different devices.

2) Host Selection. In this storage system, each storage node in the tree has entire
host index information of its descents. The format of the index is (Device ID,
Node ID, next hop). That is, if one of its descent node (say node 4) is the host
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of device A, it has the index information (A, 4, (its parent node)) The root
of the whole storage system maintains an index of the complete context data
storage information. When the host of a sensing device is selected, the host node
should send an index message to its parent node which will continue to send this
message to the upper layer node until the root. When the device moves to a new
domain, the host may shift to a new host. In this case, the new host will send
a new index message to its parent and this message will be forwarded until the
root. And the old host will send an update message to its up-layered nodes to
delete the old index. Then, the data stored in the old host will be transferred
to the new host.

3) Data Storage. Based on the above description, all the nodes may have in-
dexes of all the host information of their descents. Thus, the root has all the
host information of the whole system. Generally, the node which obtains the
context data is the descent node of the host of the device, and it maintains
the host information. Accordingly, when the context data is sent to these
nodes, the data will be uploaded to their upper-layered nodes layer by layer
until the host node. However, if the device moves to a new domain, things
may be more complicated. The leaf node that obtains the data may not have
the host information of this device. In this case, this node will send the data
to its parent which will forward the data to its up-layered node until to the
node that has the host information of the device. Then, this node will trans-
form the data to the node according to the next hop, i.e. one of its children
nodes.

4) Data Query. Context data query request could be from any node. For any
query request, the system analyzes the device ID of the request data and finds
out the host of the related device to get the context data. The query procedure
is similar with the storage procedure. That is, if the node has the index of
the host information, it forwards the request to the next hop, otherwise it will
forward the request to its parent node.

3.3 Host Selection

The goal of host selection is to reduce the communication cost. This strategy is
based on the fact that a certain mobile device sends data to the different leaf nodes
with different frequencies. For example, the trace of a body sensor is exactly the
owner’s trace, and as we know, people mainly appear in the working place and home.
Thus, choosing a node that is close to the leaf nodes in these two domains may save
a lot of communication resources.

For any mobile device, all leaf nodes may have the chance to communicate with
the device and get data. When the host is selected, the storage can be converted
into a new overlay tree with the host node as the root, which is called context
storage tree (CST). This context storage tree is a logic storage structure, it only
shows how the context data of a certain device is delivered from the leaf nodes
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to the host. Each device has its own storage tree, although they have the same
physical storage architecture. Based on the physical storage architecture in Fi-
gure 1, its CST can be described as Figure 2, if the node 10 is selected as the
host.
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Fig. 2. Context storage tree

For a mobile device, suppose we know the probabilities that it sends data to
the different leaf nodes. The probabilities are denoted as the weight (w) of the
leaf nodes. Concretely, we get the weight from the data frequency list, i.e. we use
the number of communication between the device and the node to represent the
frequency. Thus, the weight is monotonic value increase as the time goes on. Then,
the storage cost can be represented as the weighted path length (WPL) of the tree.
Thus, the host selection problem can be represented as constructing the context
storage tree with the minimum WPL.

Definition 1 (Host selection). Given a tree-like context data storage system, let
WPL(i) represent the weighed path length of the context storage tree with the
node i as root. The host selection problem is to find a node j, satisfy WPL(j) =
min(WPL(i), i ∈ V ), where V is the set of all the nodes in the system. The storage
tree with the root Vj is called optimized storage tree.

4 GLOBAL HOST SELECTION

4.1 The Algorithm

In this algorithm, we introduce two variants: WPL and leafWeight. WPL represents
the weighted path length while leafWeight is the sum of the probability that all the
descendant leaf nodes communicate with the device.
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Initially, the leafWeight of each leaf node is got from historical data, and all the
WPL and leafWeight of the non-leaf node are set as 0. Then, the nodes with least
leafWeight are selected from current leaf node set, and update WPL and leafWeight
of its neighbor with the following equation:

WPL + = WPL delete + leafWeight delete (1)

leafWeight + = leafWeight delete (2)

This process continues until one node is left, and this node is the root of the
storage tree. The pseudocode of GHS is given in Algorithm 1.

Algorithm 1 Global Host Selection Algorithm

1: for each leaf node, WPL[i] = 0, LeafWeight[i] = p[i]
2: for each non-lead node, WPL[i] = 0, LeafWeight[i] = 0
3: LeafSet = B
4: while LeafSet has more than one node do
5: Find leaf node l[j] from LeafSet with least leafWeight[j]
6: l[i] is neighbor (parent or child) of l[j]
7: WPL[i] = WPL[i] +WPL[j] + leafWeight[j]
8: leafWeight[i] + = leafWeight[j]
9: Remove l[j] from LeafSet

10: end while
11: Host node is the left node of LeafSet

4.2 The Proof of Correctness

In context storage tree (CST), wn is the weight of node vn. leafWeight is the
communication probability for leaf node, and is the probability sum of all descendant
leaf nodes for non-leaf nodes, which is initialized as 0 and updated by the leaf node
deletion.

Let WPLn the weighted path length of subtree with vn as the root, and WPL′

n

the weighted path length of reconstructed CST with vn as the root. WPLn is
computed with WPLn =

∑

vi∈desendant(vn)
(wi ∗ li).

Theorem 4.1. In a tree,for non-leaf node vm,

WPLm =
∑

vi∈children(vm)



WPLi +
∑

vj∈desendant(vi)

wj



 . (3)

Proof. Let PLij be the length of the path from node vj to node vi. For any child
node vn of non-leaf node vm, the subtree with root vn is denoted as sub(vn).

∑

vj∈sub(vn)

(wj ∗ PLmj) =
∑

vj∈sub(vn)

(wj ∗ (PLnj + PLmn)) = WPLn +
∑

vj∈sub(vn)

wj (4)
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Therefore, the weighted path length of subtree with node vm as root is

WPLm =
∑

vi∈children(vm)

∑

vj∈sub(vi)

(wj ∗ PLmj) =
∑

vi∈children(vm)



WPLi +
∑

vj∈sub(vi)

wj





(5)
�

From Theorem 4.1, we can get the relation of one node’s WPL with his children’s
WPLs, which is used to compute the WPL of any subtree in the CST recursively.

Theorem 4.2. Let L denote the leaf set. If wm = minvi∈L wi, the CST with root
vm has WPL′

m ≥ minvi∈V WPL′

i.

Proof. DL(vi) = desendant(vi)L. The CST with root vm has

WPL′

m = WPLm +WPLn +
∑

vi∈sub(vn)

wi. (6)

The CST with root vn has

WPL′

n = WPLn +WPLm + wm. (7)

For vq ∈ DL(vn),
∑

vi∈sub(vn)
wi ≥ wq, as wm = minvi∈L wi, wq ≥ wm, comparing the

above two inequalities, we get

∑

vi∈sub(vn)

wi ≥ wm (8)

and,

WPL′

m −WPL′

n =
∑

vi∈sub(vn)

wi − wm ≥ 0. (9)

Therefore, WPL′

m ≥ minvi∈V WPL′

i. �

Theorem 4.2 shows that there is another node other than the deleted leaf node
having a less or equal WPL. That is, the WPL of the CST with deleted leaf node as
its root is not less than the minimum WPL. After the iterative deletion, the node
which CST has a minimum WPL remains, and this node is the best candidate for
the host node.

Theorem 4.3. The deletion of leaf node does not change the WPL of CST. Let
the weighted path length of CST before and after deletion operation be WPL and
WPL′ respectively; we have WPL′ = WPL.

Proof. In a deletion operation, vm is the node to be deleted and vn is its neigh-
bor. The weighted path length and weight of subtree with root vi before deletion
operation are WPLi, wi and WPL′

i, w
′

i respectively.
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For ∀vi ∈ V, vi 6= vm, if vi is the root of Data Repository Spanning Tree, denoted
as v0. There is a path from v0 to vm, denoted as (v0, v1, v2, . . . , vk, vn, vm).

WPL′ −WPL = WPL′

0 −WPL0

=
∑

vi∈children(v0)



WPL′

i +
∑

vj∈sub(vi)

w′

j





−
∑

vi∈children(v0)



WPLi +
∑

vj∈sub(v0)

wj



 (10)

= WPL′

1 −WPL1 + (w′

n − wn − wm)

= WPL′

1 −WPL1

Similarly, WPL′

1 −WPL1 = . . . = WPL′

k −WPLk = . . . = WPL′

n −WPLn.
After deletion, node vn has an equivalent weight path length, E(WPL′

n). If
the equivalent weight path length before deletion is denoted as E0(WPLn), the
incremental of equivalent weight path length through update operation is

E(WPL′

n) = WPLm + wm (11)

Then,

WPL′

n = E0(WPLn) +∇E(WPL′

n) +
∑

vi∈(children(v0)−vm)

(WPLi +
∑

vj∈sub(vi)

wj). (12)

According to Theorem 4.1,

WPLn = E0(WPLn)+
∑

vi∈(children(vn)−vm)

(WPLi+
∑

vj∈sub(vi)

wj)+(WPLm+wm). (13)

From the above two equations, we have WPL′ = WPL. �

Theorem 4.3 proves that no matter which node is selected as the host node, the
leaf deletion operation does not change the WPL of the context storage tree, though
it changes the structure of the Data Repository Spanning Tree. This guarantees that
the cost of the deleted leaf node is equally converted and added to the cost of its
neighbor.

In GHS algorithm, each step deletes the minimum weighted leaf node, except
when there is another node whose CST has less or equal WPL according to Theo-
rem 4.2. During the deletion operation, the weight of the deleted leaf node is equally
converted and added to the weight of its neighbors, and thus it does not change the
WPL of the context storage tree according to Theorem 3. The neighbor of the
deleted leaf node may become a new leaf node if it has only one neighbor after the
deletion operation. This guarantees that GHS algorithm can choose and delete one
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leaf node each time. After finite steps, the algorithm terminates and only one node
is left, for that the number of nodes is finite. The last node is the expected host.

5 DYNAMIC HOST SELECTION

In some pervasive systems, the probabilities of the device sending data to a leaf node
are changing from time to time. We cannot determine the weight of the leaf nodes
and the host also should be changed as the device moves. In this case, we propose
an on-line host selection algorithm to dynamically select the host and optimize the
host as the device moves on.

The DHS algorithm is composed of two parts:

1. leaf node weight update and

2. host selection.

If the weight changes, the leaf node sends the increased number of communica-
tion ▽w to its parent node, the parent node updates the weighted path length as
WPL = WPL + ▽w, and the weight is updated as w = w + ▽w. After that, the
parent node will send the update information to its upper layered node until to the
host node.

Algorithm 2 WeightUpdateProcedure

1: Recieve 〈deltaWeight, deltaWPL〉 from child node;
2: w+ =deltaWeight;
3: WPL+ =deltaWPL + deltaWeight;
4: Send 〈deltaWeight, deltaWPL+deltaWeight〉 to parent node in current spanning

tree

The host selection will be triggered after the weight is updated.

Algorithm 3 HostReselectionProcedure

1: Select node s from children set of r with maximal weight, current node r is root
of current spanning tree;

2: if (2 ∗ ws − wr > 0) then
3: WPLr = WPLr −WPLs − ws;
4: wr = wr − ws;
5: WPLs = WPLs +WPLr + wr;
6: ws = ws + wr;
7: Set node s as the new host of tree;
8: Send ReselectHost to node s for reselect;
9: else

10: host := r, that is current node r is host;
11: end if
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The host Vr selects one of its children nodes with the greatest weight and cal-
culates ▽ = wr − 2ws. If delta is less than 0, then Vs is selected as the new host.
Then, the new host will do the same procedure as the original host until the delta
is larger than 0 or to the leaf node. Finally, the host node would be the new root of
the storage tree.

5.1 The Proof of Correctness

In the current storage tree with root Vm, the weighted path length is denoted as
WPLm. For the restructured storage tree with root Vn, the weighted path length is
denoted as WPL′

n.

Theorem 5.1. In a storage tree with root Vm, Vn is one of the children nodes; if
∇m = (2 ∗ wn − wm) > 0 , then WPL′

n < WPLm.

Proof. If Vn is the root of the restructured storage tree, then the weighted path
length is, WPL′

n = WPLn + (WPLm − WPLn − wn) + (wm − wn), then, WPL′

n −
WPLm = −2 ∗ wn + wm < 0, that is, WPL′

n < WPLm. �

Theorem 5.2. In a storage tree with root Vm, if wn = maxwi, Vi ∈ Children(Vn),
then, Vn is the candidate host.

Proof. Suppose Vi is one of the children nodes of the Vm, the weighted path length
of Vi is WPLi and weight is wi. If Vi is the root of the restructured tree, then the
weighted path length WPL′

i = WPLi + (WPLm −WPLi − wi) + (wm − wi). Then,
for any child node of Vm, say Vx, we can get WPL′

x−WPL′

n = 2(wn−wx). Because
the wn > wx, then, WPL′

x −WPL′

n > 0.
Consequently, only Vn whose weight is the biggest could be the candidate because

the WPL′

n is the smallest among the current child nodes of the root. �

Theorem 5.3. For any edge emn in an optimized storage tree with root Vr, if Vn is
the parent node of Vm, then WPL′

n < WPL′

m.

Proof. The Vn is the parent node of Vm, there is a path from Vr to Vm via Vn,
denoted as P = 〈Vr, V1 . . . Vn, Vm〉.

Suppose Ai is the success nodes set of (i− 1)th node of path P except of the
ith node at the path P . That is, Ai = {vx | vx ∈ desendant(vi−1) ∧ vx /∈ sub(vi)}
where Vi is the ith node of path P . We get wi =

∑

vx∈children(vi)
wx, and let Wi =

∑

vx∈children(vi)∧vx∈Ai
wx, then Wi = wi−1 − wi.

For any emn, we can calculate the difference ∇mof the WPL of the storage tree
with Vm as the root and the WPL of the storage tree with Vr as the root.

∇m = WPL′

m −WPLr = W1 ∗ d+W2 ∗ (d− 2) + . . .+Wd+1 ∗ (1− d) (14)

We also can get ∇n,

∇n = WPL′

n −WPLr = W1 ∗ (d− 1) +W2 ∗ (d− 3) + . . .+Wd ∗ (1− d) (15)
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Thus, ∇m −∇n = W1 +W2 + . . .+Wd −Wd+1. Since Vr is the root of the storage
tree, we can get ∇m > 0; thus, ∇m −∇n > (W1 +W2 + . . .+Wd)− ((W1 ∗ d+ . . .+
Wd ∗ (2− d))/d) > 0. Then, ∇m −∇n = WPL′

m −WPL′

n > 0. �

After the weights of tree are updated, the maximum weighted child node Vs

is selected for comparison with the root. If the weight of this node satisfies (wn −
2ws) < 0, then we know that the storage tree with the root of Vs is better than the
original tree; otherwise the program is aborted, because the root of the optimized
storage tree cannot be the node (Theorem 5.1); it is also impossible on the subtree
of this node (Theorem 5.2); and other children nodes are also impossible to be the
new root (Theorem 5.3). We can conclude that when the program is terminated,
the new storage tree would be the optimized storage tree and the root is the new
host.

6 EXPERIMENTAL ANALYSIS

In order to testify the correctness and the performance of the algorithm, we si-
mulated 14 data servers (9 leaf nodes) and built the layered data storage system
as Figure 1 shows. The communication among the data nodes is based on the
TCP socket. We also implemented the data generator to simulate the generation of
context data.

6.1 The Comparison of Different Hosts

Based on the layered data storage system, these two experiments show that selecting
different host nodes results in different communication cost.

In the first experiment, we generate a sequence with 20 context data sending
events, which is represented as the sequence of ID: 13, 13, 13, 13, 13, 13, 14, 14, 14,
14, 14, 14, 8, 8, 11, 11, 12, 12, 4, 4, 4, 5, 6, 7. The total number of data collections
is 24 and the probability of leaf node data receiving is 0.125 (4), 0.04 (5, 6, 7),
0.08 (8, 11, 12), 0.25 (13, 14) where the number in the parentheses represents the
node ID. Obviously, in this experiment, the FA-domains of the device are nodes 13
and 14.

In the second experiment, we generate the sequence as 5, 5, 5, 5, 6, 6, 6, 6,
6, 7, 7, 7, 7, 13, 13, 13, 14, 14, 14, 8, 11, 11, 12, 12. The total number of data
collections is still 24 while the probability is 0.17 (5, 7), 0.21 (6), 0.125 (13, 14),
0.04 (8), 0.08 (11, 12). Here, the FA-domains are nodes 5, 6 and 7.

Figure 3 shows the results of the communication cost of choosing different nodes
as hosts. We can see that in the first experiment, if we choose node 3 or node 10
as the host node, the communication cost is minimized, which are only 50 socket
communications. In the second experiment, node 2 is the best node as the host, and
the number of communications is 67.
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Fig. 3. Context storage tree

6.2 Performance of GHS

In Section 5, we have theoretically proved that the algorithm works correctly. In the
experiment, we test two cases shown in Section 5.2, and the algorithm gives node 10
and node 2 as the result for case 1 and case 2 respectively. From Figure 4, the result
is correct, except that the algorithm gives different results due to different sequence
of nodes if several nodes have the same cost.

Fig. 4. Context storage tree

Secondly, we test the run time of the algorithm under conditions of different
node size, supposing that the computing node has gathered all information about
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the whole topology. The test cases use the complete binary tree with node size of 15,
31, 63, 127, 255, 511 and the probability of each leaf node is generated by random
function. The run time comparison is shown in Figure 4. The result shows that the
run time of EHS algorithm grows linearly with the size of nodes when the node size
is large enough.

6.3 The Performance of DHS

The goal of the DHS is to reduce the communication cost of the system during
the data storage. Now we test the communication cost of DHS itself. The cost of
DHS algorithm includes the cost of weight update and host reselection procedure.
Figure 5 a) shows the communication cost of DHS under the situation that the de-
vice moves at a low speed, i.e. it does not frequently switch from different domains.
Since most of the sensing devices move like this, we consider it as the normal case.
As we can see, the cost of DHS is very low compared with the normal commu-
nication. More concretely, (Host Selection cost)/(Total cost) = 1/22. Figure 5 b)
shows the communication cost when the device is moving fast, and it sends data
to several different nodes in a short time. In this case, the cost of DHS occupied
nearly half communication cost in some nodes, because of frequent host reselection.
(Host Selection cost)/(Total cost) = 17/41.

As Figure 5 b) shows, if the host was changing frequently, the cost of DHS would
be high. We call the frequent host switch host jitter. In a practical system, the be-
haviors of sensing devices are relatively stable. The devices seldom skip between two
domains and have asymmetric data sending ratio. Consequently, in a normal case,
the costs of host selection only take up a small portion of the total communication
costs. In some special cases, we also can set a threshold to reduce the number of
host reselection, so that we can avoid the host jitter.

7 CONCLUSIONS

In this paper, we investigate the layered context data storage problem. The mobile
devices send data to different nodes, which needs to be merged and stored in certain
host nodes. How to select a suitable host with a minimum communication cost is
a challenge. We propose a global host selection algorithm GHS and an on-line host
selection algorithm DHS to select the host node. We also prove the correctness of
two algorithms and set up simulation experiments to approve the performance of
GHS and DHS. In future work, we will deploy it in a large-scale system and get
more experimental data to improve the efficiency of the system.
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a)

b)

Fig. 5. The cost of host selection: a) normal case, b) frequent domain switch
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