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Abstract. Exploiting Grids intuitively requires developers to alter their applica-
tions, which calls for expertise on Grid programming. Gridification tools address
this problem by semi-automatically making user applications to be Grid-aware.
However, most of these tools produce monolithic Grid applications in which com-
mon tuning mechanisms (e.g. parallelism) are not applicable, and do not reuse
existing Grid middleware services. We propose BYG (BYtecode Gridifier), a gridi-
fication tool that relies on novel bytecode rewriting techniques to parallelize and
easily execute existing applications via Grid middlewares. Experiments performed
by using several computing intensive applications on a cluster and a simulated
wide-area Grid suggest that our techniques are effective while staying competitive
compared to programmatically using such services for gridifying applications.
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1 INTRODUCTION

Grids arrange geographically dispersed computational resources to execute comput-
ing intensive applications [7]. Grid resources are managed through Grid middlewares
such as Globus, Condor-G [21] and CrossBroker [6], which virtualize resources by
means of services (e.g. job scheduling) and supply developers with APIs for us-
ing them. Recently, research in Grid middlewares has focused on simplifying the
consumption of the offered services from within applications. Works in this line
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are grouped into programming toolkits and gridification tools [14]. Programming
toolkits provide high-level APIs that abstract away the details to interact with such
services, thus less effort is required compared to directly using Grid middleware
APIs, or low-level Grid libraries such as MPI [5, 28]. However, these toolkits still
require solid knowledge on Grid programming.

Gridification tools incorporate Grid services into existing applications by semi-
automatically transforming codes to run on a Grid; thus they better support users
having little background on Grid technologies. Gridification tools can accept as
input the source code of an application, its compiled version or both. The first
approach gives developers more control over their codes to build efficient Grid ap-
plications. The second approach allows submitting codes “as is” for execution on
a Grid platform. In the third approach gridification happens at both the source
code and compiled code levels. Typically, programmers are supplied with direc-
tives to annotate their source codes, which are then processed to incorporate the
Grid behavior. From now on, applications employed to feed a gridification tool
will be referred as “Grid-unaware” applications, whereas applications produced
from using such a tool will be referred as “Grid-aware” or “gridified” applica-
tions.

Unfortunately, current techniques for gridifying binary codes prevent the usage
of common Grid tuning mechanisms. Then, gridified applications are monolithic,
coarse grained Grid-aware codes that cannot be altered to better exploit Grid re-
sources. Most of these approaches do not provide mechanisms for distributing or
parallelizing individual parts of an application. Although they simplify gridification,
they usually lead to a poor usage of Grid resources [14]. Therefore, there is a need for
alternative gridification tools that provide a convenient balance between the effort
necessary to deploy and run codes on a Grid, and the gridification granularity [14]
or the levels at which the application can be tuned. We propose BYG (BYtecode
Gridifier), a Java tool that allows binary codes to be gridified at various granularity
levels. Users can configure the components1 of their applications that are subject to
execution on Grid middlewares. BYG does not provide yet another Grid resource
manager, but offers a glue between gridified applications and the execution services
of existing Grid platforms.

Preliminary experiments conducted on a small cluster [16] showed the feasibi-
lity of BYG. Here, we provide a deeper explanation of BYG concepts and report
experiences with BYG in a larger cluster and a wide-area Grid to run classic com-
puting intensive codes. Results show that BYG does not incur in much performance
overheads compared to manually programming Grid applications and proved to be
very competitive. The next section discusses relevant related works. Section 3 over-
views BYG. Section 4 explains the integration of BYG with Condor-G and Satin,
two representative Grid middlewares. Section 5 reports the experiments. Section 6
concludes the paper.

1 From now on, the term should be understood in the context of component-based
software.



A Novel Mechanism for Gridification of Compiled Java Applications 1261

2 BACKGROUND

Several approaches for gridifying software can be found in the literature. We will
focus on the efforts aimed at making gridification as invisible to the user as possi-
ble, i.e. those works that transparently incorporate Grid behavior into the compiled
versions of Grid-unaware applications. Table 1 summarizes these approaches. The
first column indicates the type of binary code accepted as input by each tool. In
general, tools that only allow users to submit their compiled codes “as is” to a Grid
are based on machine-dependent binary codes. The second column details the sup-
ported gridification granularities. “Coarse”, “medium” and “fine” means that the
Grid execution units associated to an application are derived from either its entire
code, some of its objects or components, and some of its methods or operations,
respectively. The third column indicates whether each tool provides integration
with the execution services of existing Grid middlewares and Resource Management
Systems (RMS). The following subsections discuss the tools presented in Table 1.

Tool Binary code flavor Gridification

granularity

Grid platform

reuse

GEMLCA Machine-dependent Coarse Partially (only

Globus)

GridSAM Machine-dependent Coarse Yes

GRID su-

perscalar

Machine-dependent Coarse Yes

DG-ADAJ Machine-independent

(bytecode)

Fine No (custom RMS)

LGF Machine-dependent Fine, coarse No (custom RMS)

J-

Orchestra

Machine-independent

(bytecode)

Medium No (RMI messaging)

ProActive Machine-independent

(bytecode)

Medium Yes

Satin Machine-independent

(bytecode)

Fine Partially (only

Globus)

Volta Machine-independent (CIL) Fine No (custom RMS)

XCAT Machine-dependent Coarse Yes

Table 1. Contemporary gridification tools based on binary codes and hybrid approaches
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2.1 Machine-Dependent Binary Code Gridifiers

GEMLCA [4] lets users to deploy legacy programs as OGSA-compliant services [10]
via a frontend. To execute the gridified codes, GEMLCA uses the GRAM job sub-
mission service of Globus. Upon gridification, the user specifies metadata informa-
tion (parameters, executable path, etc.) and resource requirements (CPUs, memory,
etc.) for his application in a configuration file. GEMLCA uses a nongranular execu-
tion scheme (i.e. running the same binary code on several processors) but no internal
changes are made in the gridified applications. Then, distribution and parallelism
of individual application modules cannot be controlled in a fine-grained manner.
GridSAM [17] can be used to publish legacy applications as Web Services, which
are then treated as separate modules that can be composed via a workflow descrip-
tion document that is executed on top of other Grid platforms. Unlike GEMLCA,
GridSAM is not an RMS, but an interface to existing Grid job execution services.

XCAT [8] supports execution of component-based applications on existing Grid
platforms by linking components to middleware-level execution services. Application
components can also wrap legacy binary programs. Complex applications are built
by programmatically assembling components together, which demands little coding
effort from the developer but still requires knowledge on the XCAT API. As both
XCAT and GridSAM treat legacy codes as black boxes, they share the limitations of
GEMLCA with respect to gridification granularity. GRID superscalar [25] provides
an API for programming applications composed of tasks, whose granularity is at
the level of programs, which take data files as input and produce result files as
output. The tool includes a special compiler that links compiled task codes together
and optimizes the performance of the application by analyzing file dependencies.
LGF [2] is another framework for deploying legacy applications as Web Services.
Central to its design is a two-layered architecture in which the adaptation layer is
heavily decoupled from the backend layer. With LGF, it is possible to monitor the
performance of Grid applications at the application and code region levels. However,
LGF does not take advantage of existing Grid execution services.

2.2 Machine-Independent Binary Code Gridifiers

DG-ADAJ [11] is a mechanism for transparent execution of multi-threaded Java ap-
plications on JVM (Java Virtual Machine) clusters. DG-ADAJ derives graphs from
a compiled application, which account for data and control dependencies, by using
representative sets of input data. Then, an heuristic is applied to place mutually
exclusive execution paths from the graphs among the hosts of a cluster. DG-ADAJ
promotes threads as the base programming model, which have been much criticized
since threads make programming and debugging rather difficult [12]. In contrast,
BYG gridifies single-threaded programs by leveraging existing execution services for
exploiting Internet-wide Grids.

ProActive [1] provides technical services, a support to address non-functional
Grid concerns (e.g. load balancing and fault tolerance) by plugging configuration
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external to applications at deployment time. ProActive allows users to gridify com-
piled classes as mobile entities without code modification, and features integration
with a variety of Grid schedulers. However, creating computations based on a subset
of the methods of a Grid-unaware class requires to manually use the ProActive API,
which is precisely what gridification tools intend to avoid. Lastly, J-Orchestra [22]
relies on bytecode rewriting to place application objects into distributed JVMs and
to replace local method calls with remote methods calls based on RMI. Classes/ob-
jects subject to distribution are indicated through a GUI. J-Orchestra is essentially
an application partitioner operating at the class granularity level. Unlike BYG,
J-Orchestra takes advantage of object distribution but is not designed to exploit
parallelism within classes.

2.3 Hybrid Approaches

Other tools follow a hybrid approach to gridification, in which developers are in-
volved in the process of altering an application to gridify it. It is worth noting that
the term “hybrid” does not refer to gridifiers able to both gridify machine-dependent
and machine-independent binary codes, but refers to tools requiring modifications
to the source code of input applications prior to automatically alter their compiled
counterpart.

Satin [24] is a Java framework for parallelizing divide and conquer applications.
The user indicates in the application code the points in which a fork or a join should
take place. Then, Satin instruments the compiled code to transparently handle the
execution of parallel tasks on a Grid. Similarly, Volta [13] recompiles executable
.NET applications on the basis of declarative developer annotations to insert re-
moting and synchronization primitives so as to transform applications into their
distributed form. Recompilation operates at the CIL (.NET Common Intermediate
Language) level. Precisely, the weak point of these tools is that they require some
modifications to the source code of applications.

3 THE BYTECODE GRIDIFIER APPROACH

While the discussed approaches are targeted at users with little expertise on Grid
technologies, Satin and Volta are some way off from being true binary code gridifiers,
as they impose source code modifications. GEMLCA, GridSAM, ProActive, J-Or-
chestra, XCAT and GRID superscalar offer a poor balance to the “ease of gridi-
fication versus fine tuning” trade-off [14], since they avoid code modification, but
gridification results in coarse or medium-grained Grid execution units that cannot be
restructured for parallelism. Only a small number of the approaches are designed to
fully exploit the execution services of other Grid platforms. In fact, DG-ADAJ, LGF,
J-Orchestra and Volta rely on custom Grid execution platforms. However, a trend
in Grid Computing, as evidenced by broadly adopted standards such as OGSA and
WSRF [10], is to promote interoperability among Grid tools and middlewares. Then,
Grid middleware integration is now the rule and not the exception.
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We propose BYG (BYtecode Gridifier), a gridification tool that avoids source
code modification, and deals with the above trade-off by letting developers to tune
their applications with little effort while minimizing the deployment effort to put
a Grid application to work. BYG leverages the execution services of existing Grid
platforms through the explicit but non-invasive use of connectors, which materialize
the protocols to access the various services of specific Grid platforms. Connectors
are non-intrusively injected directly into the binary code to delegate the execution
of certain parts of the application to a Grid platform and to transparently adapt this
code to take advantage of the API provided by the target platform. The mapping
of which parts of an application are delegated to such services is specified by means
of user-supplied configuration.

BYG targets component-based applications implemented in Java. We chose Java
as it is broadly adopted by developers, and provides many features that facilitate
the modification of applications at the bytecode level (e.g. extensible class loading
and reflection). In addition, component-based notions are commonplace in Java,
as evidenced by the high popularity of component models such as JavaBeans and
EJB. For these reasons, BYG can benefit a large amount of today’s Java applica-
tions.

Component-based development focuses on designing applications as a number
of logical components with well-defined interfaces. Components only know each
other’s interfaces, and are self-contained, thus any kind of interaction involving
tightly-coupled communication is disallowed (e.g. invoking component operations
by passing arguments by reference). Therefore, any application component can
be replaced without affecting the rest of the components. Precisely, this allows
BYG to non-invasively replace a Grid-unaware component with its Grid-aware ver-
sion.

Figure 1 overviews BYG. Conceptually, BYG takes an application and dyna-
mically transforms it so as to run some component operations on different Grid
platforms. In this sense, BYG can be seen both as a competitor of existing ap-
proaches and a complement to them. BYG processes the developer’s configuration,
intercepts all invocations to such operations (in this case operationA1 and opera-
tionB1 ), and delegates their execution to the associated target Grid platform (in
this case Condor-G and Satin, respectively) by using connectors. All in all, the
benefits of this approach are:

Less gridification effort: The developer specifies which parts of its application
should be executed on a Grid, but without explicitly introducing source code
modifications to do so. In addition, the Grid services associated to an application
can be detached by simply modifying its configuration, i.e. “ungridifying” the
application.

Middleware independence: Depending on the nature of each component opera-
tion, different Grid execution services could be used. For example, all mission
critical computations may be submitted to a Grid platform with fault toler-
ance capabilities such as Condor-G (see Section 4.1). Furthermore, all calls on
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a parallel operation may be sent to a Grid platform able to execute the opera-
tion in parallel (e.g. Satin) in order to improve performance and scalability (see
Section 4.2).

Flexible fine tuning: Unlike related tools, in which applications are mostly exe-
cuted in a black box fashion, developers can use BYG to fine-tune the execution
of their applications by submitting calls to component operations of various sizes.
Rather than following the coarse-grained gridification scheme [14] promoted by
many tools, in which a whole application is submitted for execution to a Grid,
BYG lets programmers to select which component operations – of potentially
different granularities – are gridified. Then, the unit of computation in BYG
are component operations.

Using or not a specific Grid execution service is mostly subject to availability factors,
i.e. whether a Grid running the desired Grid platform is available for job submission.
However, the choice of gridifying an operation depends on whether the operation is
suitable for being gridified. The potential performance gains in gridifying an applica-
tion depends on two design factors: the amount of data (i.e. parameters) that needs
to be transferred to execute the gridified operations, and the resource requirements
of the operations. BYG aims at alleviating the burden of adapting and submitting
a Grid-unaware application for execution on a Grid, while these factors must be
addressed early by the user.

Architectonically, BYG provides a tier that mediates between a Grid-unaware
application (the client side) and Grid middlewares (the server side). Gridified com-
ponents are run at the server side by means of connectors, whereas non-gridified
components remain at the client side. In principle, BYG can take advantage of any
Grid middleware exposing a well-defined remote job submission interface for Java.
Depending on the case, an additional software layer on top of the target middleware
may be required though. Even when BYG can be used with different Grid middle-
wares, the approach is not capable of accessing any middleware in a fully transparent
way, because some Grid platforms cannot be easily exploited in a client-server fa-
shion. In the following sections we will illustrate this requirement in the context of
our bindings to Satin.

As mentioned, BYG is designed to gridify component-based applications. In ge-
neral, this ensures that application components are highly decoupled, so that com-
ponent operations can be run in a different memory address space without worrying
about which component issued the invocation and how the operation arguments and
their results are interchanged. Depending on the particular connectors being used,
operations must adhere to certain coding conventions at development time. Never-
theless, following good object-oriented practices such as employing proper method
modularization, placing the result of calls on local variables, and avoiding parameter
passing by reference suffices for the effective use of the various connectors. For in-
stance, these two latter ones allow BYG to spot the points in a component’s bytecode
representing calls to operations and access to their results, which in turn let BYG to
rewrite the bytecode of the component to exploit asynchrony and parallelism at the
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operation level. Moreover, good method modularization allows for flexible tuning of
components at different granularity levels.

There are two types of component-based applications for which BYG has limi-
tations. Applications in which components have a high degree of interdependency
(e.g. workflows), may not be suitable for BYG. Particularly, a workflow is a col-
lection of tasks (or components) with transitions between them. The higher the
number of transitions, the higher the amount of communication between compo-
nents at runtime. Then, remotely executing some of these components may increase
communication costs and thus render gridification counterproductive. For simi-
lar applications, developers should analyze the amount of communication before
deciding whether to use BYG or not. Another limitation may arise with appli-
cations comprising data components (e.g. files), which have a semantic based on
their localization and whose execution environment cannot be changed. A common
approach to address this problem are proxies [1], so that remote (or gridified) com-
ponents can transparently access the data components, or any other non-gridified
components. For instance, J-Orchestra [22] supports proxies by modifying byte-
codes to allow partitioned remote objects to transparently communicate between
each other.

We have developed a proof-of-concept implementation of BYG, which is de-
scribed in the next section2. The prototype can gridify applications compliant to
the JavaBeans specification, a set of conventions for componentizing Java classes
that is very popular in the software industry. Gridifying a compiled application
with BYG only requires to

1. configure an XML file that instructs BYG how to map component operations
to Grid execution services, and

2. add a JVM argument to the bootstrap script that initiates the user application.

Currently, BYG supplies connectors for Condor-G [21] and Satin [24].

4 PUTTING BYG TO WORK

The first step to gridify an application with BYG is creating an XML configuration
file, which specifies the components to be gridified, and the binding information (or
entry point) that depends on the Grid middleware(s) to which BYG will delegate
the execution of these components. Consequently, the user has to know some details
of the Grid host that plays the role of job executor of each middleware. Broadly,
entry points are a common abstraction of the middleware-level frontend components
that reside on a specific host of a Grid and accept jobs for execution. An application
may have many parts suitable for execution on a Grid. To this end, the user must
provide

2 BYG is available at http://www.exa.unicen.edu.ar/~cmateos/files/BYG-1.0.

zip.
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1. the list of Java methods (owner class and signature) to be gridified,

2. the connectors to be used, and thus the Grid execution service, and

3. the job submission protocol over those provided by the connectors being em-
ployed

for example, Condor-G offers a remote job submission mechanism based on raw
sockets and a Web Service submission interface.

1 <connec to r s>
2 <connector name=”example”>
3 <middleware name=” sa t i n ”>
4 <proper ty name=” pro toco l ”>r aw socke t s</ proper ty>
5 <proper ty name=”host ”>s a t i n s e r v e r i p</ proper ty>
6 <proper ty name=”port ”>s a t i n s e r v e r p o r t</ proper ty>
7 </middleware>
8 <c l a s s e s>
9 <c l a s s name=”Fib”>
10 <method name=” f i b ”>
11 <parameter type=” long”/>
12 </method>
13 </ c l a s s>
14 </ c l a s s e s>
15 </ connector>
16 </ connec to r s>

The above configuration tells BYG to execute a method from the Fib class
(lines 9–13) via the services of Satin (lines 3–7). Lines 3–7 are the binding infor-
mation necessary to submit this method for execution to a Grid running Satin.
Particularly, host and port are the contact information of the entry point to Satin.
It is possible to define more than one connector within a configuration file, and
associate several methods to them.

BYG uses the java.lang.instrument package, a built-in Java API for modifying
bytecodes intended to be extended through special libraries called Java agents, which
run embedded in the JVM and customize the class loading process. The kernel of
the mechanism for dynamically injecting connector code into application classes in
BYG is implemented as a Java agent. To gridify an application, its startup command
must look like: java -javaagent:bygAgent.jar=config-file main-class . . . At runtime,
the BYG agent processes the user’s configuration file and instruments the bytecodes
of the affected methods as classes load. Instrumenting an individual class method
implies:

1. Rewriting its body to include instructions for launching the execution of its
bytecode on a specific Grid middleware. The injected “stub” employs the cor-
responding protocol, host and port properties to send an adapted version of the
original method body for execution to a Grid every time this method is called
by the application.
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2. Adapting its original bytecode (if applicable) to take advantage of the middle-
ware the method has been connected to, which involves preparing the method
and its owner class to the code anatomy prescribed by the target Grid mid-
dleware. For example, some platforms require applications to extend from
middleware-specific API classes, use certain API calls to exploit parallelism,
and so on.

Grid middlewares with coarse gridification granularities like Condor-G do not pro-
vide mechanisms to express independent computations within a method. Then,
gridifying an operation with BYG/Condor-G does not require to perform step 2.
However, middlewares with finer granularities such as Satin do have API primitives
to express parallelism. BYG exploits such primitives by generating peers, which
are components whose bytecode is derived from the components being gridified but
rewritten so that they exploit the underlying paralellization constructs. In summary,
building a connector requires transferring code and parameter values to execute
methods within a Grid, and designing the bytecode rewriter according to targeted
middlewares. The first task mostly requires engineering efforts. For middlewares
not relying on coarse-grained execution models, the second task raises some difficult
issues as it is necessary to transparently modify the input bytecode to exploit the
underlying parallel primitives. The next two subsections discuss the Condor-G and
Satin connectors, respectively, emphasizing on how they address these aspects.

4.1 The Condor-G Connector

Condor-G [21] is a popular Grid middleware that provides a powerful task broker
for machine-dependent executables. Condor-G also offers a subsystem to create jobs
from compiled Java programs. Based on a Java interface to this middleware [18],
we have built a Condor-G connector that wraps Grid-unaware components as Java
applications and submits them for execution to Condor-G. This interface is an API
with functionality for talking to the master, i.e. the entry point to Condor-G. To
submit a Java class to Condor-G, it is necessary to create a description file with
the fully-qualified class name, the input, output and error stream files for the corre-
sponding Java process, and the JAR files of the application. For instance, to submit
the Example class, this file would have the following directives:

un ive r s e = java , exe cutab l e = Example . c l a s s ,
arguments = Example , input = stream . input ,
output = stream . output , e r r o r = stream . e r r o r ,
j a r f i l e s = app l i c a t i o n . jar , queue

Example must contain a main method with the computing intensive code. In this
case, Condor-G will transfer stream.input and application.jar from the host where
the job was submitted to the host where it will be executed. Condor-G executes
Example and then transfers stream.output and stream.error back to the submitting
host. Lastly, the queue command indicates Condor-G to execute the job only once.
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The Condor-G connector builds, from the bytecode of a Grid-unaware compo-
nent operation, a class file (the peer) and its description file. These files represent
a Condor-G job, which are submitted to Condor-G by the connector through the
Condor-G API. Upon job completion, the results of the operation and potential er-
rors are passed back by BYG to the Grid-unaware component that originally called
the operation. The input and output streams are used to transfer the operation
parameters and return value, respectively.

Figure 2 illustrates how the connector creates a Condor-G job from a Grid-
unaware component operation. Based on the bytecode of the Grid-unaware class and
the method to gridify, the connector generates a job description (step 1) and a peer
(step 2). The peer includes a copy of the methods of the input component plus the
static main method that is invoked by Condor-G upon job submission. As depicted,
the generated description file points to two XML files, which are used by the peer at
runtime to read the parameters of the invocation to fib issued at the client side, and
to return the results of the computations performed at the (Condor-G) server side.
To this end, we use XStream [23], a library to serialize/deserialize any Java object
to/from XML. Stub injection is performed at step 3, in which the Grid-unaware
operation is rewritten to transparently submit its gridified counterpart to Condor-G.
The stub uses the entry point information from the user-supplied configuration to
contact the Condor-G master. Bytecode instrumentation is performed by using
ASM [19].

class Fib {
  long fib(long n){
    // Ordinary method
  }
}

(1) Job
description
generation

universe
executable
arguments
input
output
error
jar_files
queue

class Fib_Peer{
  long fib(long n){
    // Body remains untouched
  }
  public static void main(...){
    // a) Deserialize "n" from results.xml
    // b) Execute fib(n)
    // c) Serialize results into results.xml
  }   
}

Grid-
unaware
bytecode

Job descrip-
tion (jd)

(2) Peer
generation

Peer

(3) Stub
injection

class Fib
  long fib(long n){
    CondorAPI.submit(jd);
    results = CondorAPI.getOutputStream();
    return deserialize(results);
  }
}

Grid-unaware bytecode
(with stub)

= java
= Fib_Peer.class
= Fib_Peer
= parameters.xml
= results.xml
= stream.error
= application.jar

Condor-G-aware
bytecode

Fig. 2. Submitting Grid-unaware classes to Condor-G through the Condor-G connector

Unlike the Condor-G connector, which provides means to run Grid-unaware
operations by using a coarse granularity execution model (i.e. a single operation call
is encapsulated into just one Grid job), the Satin connector modifies the bytecode of
such operations to exploit parallelism at a finer level of granularity (i.e. a single call
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may dynamically generate more than one Grid job). The next subsection explains
the Satin connector.

4.2 The Satin Connector

Satin [24] allows parallelizing divide and conquer Java codes by providing two pri-
mitives: spawn, to create subcomputations, and sync, to block execution until sub-
computations are finished. Methods considered for parallel execution are identified
throughmarker interfaces. In addition, the result of the invocations to such methods
must be stored in local variables. Below is the Satin code to compute the nth

Fibonacci number:

interface FibMarker extends s a t i n . Spawnable{

long f i b ( long n ) ;
}
class Fib extends s a t i n . Sat inObject implements FibMarker{

long f i b ( long n){
i f (n < 2) return n ;
long f 1 = f i b (n − 1 ) ; // Spawned accord ing to IFibMarker
long f 2 = f i b (n − 2 ) ; // Spawned accord ing to IFibMarker
sync ( ) ; // Blocks u n t i l f 1 and f2 are i n s t a n t i a t e d
return f 1 + f2 ;

}
}

After specifying spawnable methods and inserting appropriate synchronization
calls into the application, the developer must use the Satin compiler, which trans-
lates each invocation to a spawnable method into a Satin runtime task. In our
example, a task is generated for every call to fib. The Satin connector automati-
cally reproduces these manual tasks from the compiled version of components which
have not been coded to use the Satin API. The connector generates the marker
interface(s) and rewrites the bytecode of the component(s) to follow the anatomy of
Satin applications (next subsection). The connector also inserts proper calls to sync
by analyzing where a barrier must be introduced (subsection 4.2.2). To execute
Satin-aware components, the connector relies on an extended Satin runtime [16],
which provides a remote, client-server interface to the execution services of Satin.

4.2.1 Dynamic Bytecode Instrumentation

Beside injecting proper glue bytecode to execute Grid-unaware methods on Satin,
the Satin connector is responsible for dynamically adapting the bytecodes of both
these methods and the classes owning them to be compliant with the application
anatomy described in the previous section. To this end, the Satin connector carries
out two main tasks:

Marker interface generation: Satin requires applications to implement a marker
interface, which explicitly lists the methods considered by Satin for parallel
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execution. The connector builds this interface from the methods listed in the
XML configuration for the class being connected to the Satin services by using
ASM.

Peer generation: Satin requires applications to implement a marker interface and
to extend from SatinObject. In this sense, a clone or peer of the non-gridified
class under consideration is created and instrumented to fulfill these require-
ments by using ASM. In a subsequent step, the peer is further rewritten to use
the Satin sync primitive.

Figure 3 depicts the steps performed by the Satin connector to build the Satin-aware
version of a class. Based on the bytecode of the class being gridified and the target
method(s), the connector creates the corresponding marker interface (step 1) and
a Satin peer for it (step 2). Then, based on a special algorithm, the connector
automatically inserts calls to the sync primitive into the generated peer (step 3).
Afterwards, the peer is processed with the Satin compiler itself (step 4). At runtime,
the final peer is instantiated at the client side by the connector and submitted for
execution to the abovementioned extended Satin runtime.

class Fib {
  long fib(long n){
    if (n < 2)
      return n;
    long f1 = fib(n - 1);
    long f2 = fib(n - 2);
    return f1 + f2;
  }
}

(1) Marker
interface
generation

interface FibMarker{
  long fib(long n);
}

class FibPeer
  extends SatinObject
  implements FibMarker{
  long fib(long n){
    // Body remains
    // untouched
 }
}

Satin-
aware

bytecode

Grid-
unaware
bytecode

Marker
interface

Grid-unaware
bytecode

+

(2) Peer
generation

Peer (without barriers)

Marker interface

+

(3) Barrier
insertion

class FibPeer
  extends SatinObject
  implements FibMarker {
  long fib(long n){
    if (n < 2)
      return n;
    long f1 = fib(n - 1);
    long f2 = fib(n - 2);
    sync();    
    return f1 + f2;
  }
}

Peer (with barriers)

+

(4) Satin
compi-
lation

Marker interface

Fig. 3. Gridifying Grid-unaware through the Satin connector

4.2.2 Automatic Insertion of Synchronization Barriers

When programming with Satin, the results of calls to parallel methods must be
placed on local variables. Before reading such variables, the developer must insert
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calls to sync, which ensures that such results are available before they are accessed.
Step 3 (see Figure 3) automatically reproduces this task by analyzing the bytecode
generated at step 2 by using an algorithm that aims at inserting a minimal number
of synchronization barriers and at the same time preserving the semantics of the
original code. The algorithm works by deriving a high-level, ad-hoc representation
of the bytecode to carry out the analysis as close to the source code of the application
as possible. This mapping is possible since there is a direct correspondence between
Java source and bytecode [3].

Java compiles the source code of methods as a number of labels, each containing
a number of bytecode instructions. Individual labels form disjoint instruction blocks
containing local variable declarations, method calls, goto-like directives to jump
to other labels, etc. The relationships between labels define the control flow of
a method. For example, the source code of Figure 4 (left) is compiled into seven
labels (center), which in turn give origin to a block tree (right) comprising three
nodes, namely the whole method, the loop construct and the conditional branch
inside the loop. The root of a block tree always corresponds to the body of a method,
whereas the rest of the nodes exclusively depend on the structure of the sentences
within this method.

Block
tree

Method Block
(L0-L7)boolean check(int a, 

                         int[] b) {
  int i = 0;
  while (i < b.length) {
   if (b[i] > a)
    return true;
  }
  ...
  return false;
 }

  public check(I[I)Z
   L0:  ICONST_0
          ISTORE 3
   L1:  GOTO L2
   L3:  ALOAD 2
          ILOAD 3
          IALOAD
          ILOAD 1
          IF_ICMPLE L4
   L5:  ICONST_1
          IRETURN
   L4:  IINC 3 1
   L2:  ILOAD 3
          ALOAD 2
          ARRAYLENGTH
          IF_ICMPLT L3
   L6:  ICONST_0
          IRETURN
   L7:

Java
bytecode

Java
source code

Decision Block
(L3-L5)

Loop Block
(L0-L2)

. . .

Compilation
Block tree
generation

Fig. 4. From Java bytecode to block trees

To derive the block tree of a method, the Satin connector analyzes its byte-
code instructions sequentially to find those that provide information about control
sentences. Specifically, these instructions are the ones that lead to jumps within
a method (e.g. IFEQ, IFLT, GOTO, IFNULL, etc). As these instructions are spot-
ted, the corresponding block tree is built. Each block has a reference to every single
bytecode instruction it contains and a pointer to every block representing immedia-
tely inner scopes. This high-level view of the bytecode is then used by the algorithm
for inserting synchronization barriers.

The algorithm works by walking through the instructions of a method to de-
tect the points in which a local variable is either defined or used by a sentence.
A variable is defined when the result of a spawned computation is assigned to it,
and is used when its value is read. To work properly, Satin methods can read
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procedure identifySyncPoints(instrList) ⊲ Bytecode instructions of the input
method

tree← deriveBlockTree(instrList)
syncPoints← createEmptyList ⊲ List of resulting synchronization points
for i← 1, length(instrList) do

if varCode← isSpawnableVar(instrList[i]) then
currentBlock ← getBlock(tree,instrList[i])
if beingUsed(varCode,instrList[i]) = true then

if getFirstState(varCode,currentBlock) = UNSAFE then

syncVarsInBlock(currentBlock)
addElement(syncPoints, instrList[i])

end if

else if beingDefined(varCode,instrList[i]) then
desyncVarUpToRoot(varCode, currentBlock)

end if

end if

end for

return syncPoints

end procedure

Algorithm 1: Identifying synchronization points

such variables provided a sync has been previously issued. Our algorithm thus
modifies the bytecode so as to ensure a call to sync is done between the defini-
tion and use of a local variable, for any execution path between these two points.
Moreover, as sync suspends the execution of the method until all subcomputa-
tions associated to defined variables have finished, the algorithm heuristically min-
imizes the calls to sync while keeping the correctness of the method. Algorithm 1
illustrates the barrier insertion algorithm. Its helper functions are listed in Ta-
ble 2.

The algorithm maintains a map with the spawnable variables per block, and
their associated state, i.e. SAFE (up to the current instruction the variable is safe
to use; a barrier is not needed) or UNSAFE (a barrier from where the variable
is defined is potentially needed). The algorithm takes into account the scope at
which spawnable variables are defined and used, by computing the state of each
variable according to the state it has within the (scope) node of the tree where
the variable is read and its state within the ancestors of that node. Once modi-
fied to include barriers at the spotted points (syncPoints) and processed with the
Satin compiler, the input bytecode is ready for execution, i.e. inserting calls to
sync at these points guarantees the operational semantics of Satin. Nevertheless,
the algorithm minimizes the inserted barriers to gain efficiency by further reducing
syncPoints. For example, moving such barriers out of loops results in less calls to
sync.



A Novel Mechanism for Gridification of Compiled Java Applications 1275

Signature Purpose

deriveBlockTree
(instrList)

Builds the block tree from the instructions list instrList.

isSpawnableVar
(anInstr)

Checks whether anInstr references a spawnable variable, and
returns the variable code within the method. Local variables
are identified in Java bytecode as $i , where i represents the
index of the variable within the method.

getBlock
(anInstr)

Returns the block from the tree where anInstr belongs.
Instructions belong to one block only; if BP has a child Bc,
an instruction of Bc does not belong to BP .

beingDefined
(varCode, anInstr)

Checks whether the varCode variable is being assigned
a spawnable call. Assigning the result of a spawnable call to
a local variable forms a recognizable bytecode pattern. The
function analyzes whether the pattern occurs by also
considering the subsequent instructions. Analogously,
beingUsed checks whether such a variable is read.

getFirstState
(varCode, block)

Traverses the block tree starting from block upwards looking
for the occurrence of a variable varCode in the variable maps
of these blocks. The function returns the state it has in the
block it was first encountered.

syncVarsInBlock
(block)

Sets to SAFE the state of all spawnable variables in block (up
to the current analyzed instruction) as well as the ancestors
of block. The resulting pairs [varCode,SAFE] are put into the
map of block only.

desyncVarUpToRoot
(varCode, block)

Sets the state of a specific variable to UNSAFE from a given
block up to the root block. The variable becomes UNSAFE
in block and all its ancestors.

Table 2. Helper functions used by the barrier insertion algorithm

5 EVALUATION

We performed experiments to assess the performance benefits and potential over-
heads associated to using BYG. We compared Satin versus our BYG/Satin connec-
tor by running seven classic divide and conquer applications, namely PF (prime
factorization), Cov (the set covering problem), KS (the knapsack problem), FFT
(Fast Fourier transform), Fib (Fibonacci), MM (Strassen’s matrix multiplication)
and Ad (adaptive numerical integration). We focused on the Satin connector be-
cause it is much more sophisticated than the Condor-G connector in terms of the
client side bytecode rewriting technique, the bytecode transfer mechanism, and the
BYG-supplied runtime that wraps the services of Satin.
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PF, Cov and KS are NP problems, whereas the rest of the applications are
benchmarks commonly employed to evaluate Grid frameworks. Due to their di-
versity in terms of functionality and resource demands, the applications provided
the basis for a significant performance evaluation. For the sake of fairness, the
codes were obtained from the Satin project [24]). The BYG variants were obtained
by removing from the original Satin codes any sentence related to parallelism to
derive their sequential counterparts. The applications were executed on a cluster
(Section 5.1), and a wide-area Grid (Section 5.2), which was established by using
WANem [20], a software for emulating WAN conditions over a LAN.

The gridification model promoted by BYG is basically inspired by previous
research in the context of our JGRIM project [15], an approach for Grid-enabling
component-based applications from their source code. Like JGRIM, BYG assumes
that input applications comprise one or more components heavily decoupled from
each other. This is precisely what allows BYG to submit a subset of the components
for execution to a Grid.

Unlike the codes employed for evaluation, most real-life applications comprise
several components with complex dependency graphs. Basically, the more coupling
among components, the more overhead upon the gridification of an individual com-
ponent, since it is necessary to deploy the executable code of the component being
gridified as well as that of its related components. Moreover, since Satin does not
support automatic code deployment, using test applications with complex depen-
dency graphs when comparing against BYG – which does support such mechanism –
would have been resulted in an unfair evaluation.

In this way, the above test applications allowed us to better measure the per-
formance resulted from applying our automatic parallelization techniques versus
the one obtained via manual gridification. Besides, we also provide an assessment
of the overhead necessary to submit the software artifacts associated to individual
components to a Grid. We have nevertheless recently investigated the effects of
gridifying real-life component-based codes with more complex dependency graphs
in the performance and network usage of gridified applications [26], which resulted in
competitive values for our techniques and hence provided positive evidence regarding
their applicability for such kind of codes.

5.1 Experiments on a Cluster

We used a cluster of 15 single core hosts with 3MHz CPUs and 1.5GB of RAM
running Mandriva Linux 2009.0, Java 5 and Satin 2.1, and a 100Mbps LAN. We
chose application parameters to produce moderately long-running executions. Fi-
gure 5 a) shows the average execution time for 25 runs of these applications. The
bars corresponding to BYG also include the time required to initiate our extended
Satin runtime. Figure 5 b) compares the time spent by BYG applications executing
under Satin versus the time it took to run the test applications natively with Satin.
Standard deviations were below 5%, which is an acceptable noise level considering
that Satin – and therefore our Satin connector – relies on a random task schedu-
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ler [24]. Except for FFT, BYG performed competitively, even when BYG is based
on automatic parallelism and adds a software layer on top of Satin.

The Grid-unaware version of the applications were implemented as a main class
that invoked the actual computing intensive component. For FFT, this class passed
as an argument to this latter a large array. Then, sending the computation for
execution to our Satin server required to send this data as well. In contrast, in Satin
FFT, this bootstrap invocation was far cheaper as it is performed locally. Broadly,
the cause of this problem is that distributing application components across Grid
hosts can lead to costly component interactions. To mitigate this problem, BYG
could offer to developers a rule-based support for dynamically deciding whether it
is convenient to gridify an operation or not (e.g. when the size of the arguments is
below some threshold).

Figure 5 b) shows that for 3 out of 7 of the applications (Cov, Fib, MM ) BYG
introduced gains of up to 7% with respect to Satin. In principle, this may seem con-
fusing since the BYG connector uses Satin as the underlying support for execution.
Similar gains were obtained with our synchronization techniques and our extended
Satin runtime in an heterogeneous cluster [16] and a real wide-area Grid [15]. This
is explained in part by the random nature of the Satin scheduler, but the main rea-
son is that the bytecode interpreted by the Satin runtime in either case is subject
to different execution conditions. First, the pure Satin versions of the applications
were parallelized by hand, while the BYG counterparts were parallelized via our
synchronization heuristic, which may introduce differences in the number of calls to
sync or the places in which these calls are located in the gridified codes. Second,
the execution of a pure Satin application is directly handled via the Satin platform,
whereas our Satin connectors submit applications to an extended Satin runtime, i.e.
a thin software layer on top of Satin able to execute Grid-aware codes in a client-
server fashion. Note that, despite the obtained results, our goal is not to outperform
existing Grid middlewares, but simplifying their usage without incurring in excessive
performance penalties. This experiment shows that BYG facilitates the construction
of Satin applications, while delivering competitive performance.

Figure 6 a) shows the average gridification time for 25 executions, which includes
the times required to

1. instrument the Grid-unaware bytecode to inject middleware bridging instruc-
tions and synchronization barriers,

2. process the bytecode resulting from the previous step with the Satin compiler,
and

3. build and transfer the executable files to the Grid hosts.

Gridification time was around 2.5 seconds. Note that the time complexity of the
algorithm for inserting synchronization is not O(1). Nevertheless, Figure 6 a) shows
that the time (1) remains almost constant, which proves that the performance of
the bytecode instrumentation techniques of BYG was not severely affected by the
control structure of the test applications. The time (2) appears to be slightly more
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Fig. 5. Test applications: performance results (cluster): a) Overall execution time, b) Exe-
cution time within the Satin runtime
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affected by the bytecode size of the gridified methods, since the Satin compiler per-
forms an analysis over the entire declaring class. With native Satin applications,
this overhead is not present since (3) is performed not at runtime but during deploy-
ment. However, the programmer must manually build its application with Satin.
Finally, since the experiments involved a cluster, the time (3) was negligible. Again,
this overhead is not present in Satin, as it does not support automatic transfer of
application classes.

5.2 Experiments on a Wide-Area Grid

We then simulated a wide-area Grid of 3 clusters comprising 4, 5 and 6 hosts,
respectively, and WAN links with a bandwidth of 1.5Mbps, a latency of 200ms
and a jitter of 10ms. The BYG variants of the applications were launched from
the smallest cluster. All test applications were configured to use the Cluster-aware
Random Stealing (CRS) [24] scheduler of Satin. With this strategy, when a host
becomes idle, it attempts to steal an unfinished task from remote or local hosts,
but intra-cluster steals have a greater priority than inter-cluster steals, which saves
bandwidth and minimizes latency.

Figure 7 a) depicts the average execution time for 40 runs of the applications.
The computation to network usage ratio of FFT and MM in this setting was ex-
tremely small and thus harmed CRS. Specifically, for FFT and MM, the average
amount of successful steals over the amount of total steal attempts was below 1%,
whereas for the rest of the applications this percentage was in the acceptable range
of 20–25%. In consequence, we decided to left FFT and MM out of the analy-
sis. Figure 7 b) shows the time spent by BYG applications executing under Satin
versus the time required to run the pure Satin variants. Standard deviations were
around 12%, which was due to the randomness of the Satin scheduler, plus the fact
that we introduced jitter.

For the BYG applications, we obtained two variants by disabling/enabling ca-
ching (see Figure 7 a)). When enabled, caching allows Grid hosts to maintain a local
copy of a gridified application by preventing BYG from rewriting and transferring
the application every time it is run, which avoids blindly distributing bytecode
through WAN links without checking whether the application actually changed at
the client side. Without caching, BYG added for 4 of the 5 test applications a perfor-
mance overhead in terms of execution time of 2–6%, whereas for Ad it introduced
a performance gain of 2%. This is acceptable, considering both the advantages
and the administrative costs inherent to supporting automatic instrumentation and
deployment of bytecodes. Figure 6 b) illustrates the average gridification time for
40 runs. On the other hand, with caching, BYG performed better than Satin for
all applications, experiencing average performance gains of up to 10% and 5.8%.
This is very encouraging as well, since it implies that transparently exploiting the
Satin scheduler and supporting automatic deployment of binary Java codes when
gridifying applications does not lead to a performance decrease. All in all, these
results show that the BYG applications also performed well in the WAN setting,
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and are consistent with the goal of our synchronization heuristic, which is to mimic
a human parallel programmer.

6 CONCLUSIONS AND FUTURE WORK

We have presented BYG, an approach to simplify the execution of compiled Grid-
unaware applications on Grids, which lets developers to selectively gridify the com-
ponents of existing applications. We have materialized BYG as a tool for gridifying
component-based Java applications, thus we reasonably expect it will be a benefit
for a large number of users.

Experiments show that using BYG does not imply resigning performance. We
evaluated BYG by running several computing intensive codes through Satin con-
nectors and pure Satin in a cluster and a wide-area Grid. In the cluster, BYG
performed competitively, whereas in the latter setting BYG introduced significant
performance improvements. These are interesting results considering that the only
tasks necessary to gridify an application is to supply some configuration, which
reduces gridification effort. Although the evaluation conceived Satin and BYG as
competitors, both tools are complementary: BYG promotes separation between ap-
plication logic and the external Grid services used for execution. Then, BYG is
a binary code gridifier rather than a Grid platform per se.

At present, we are building a connector for ProActive [1] and eventually pro-
viding integration with state-of-the-art Grid schedulers such as [27]. Second, we are
incorporating a rule-based support for specifying whether to gridify Grid-unaware
components or execute them unmodified instead, so as to consider heuristics for
dynamically computing the potential gains of gridification, which could be fed for
example with user-supplied performance models. As stated earlier, gridifying appli-
cations including components with a high degree of interdependency such as work-
flows with BYG may be counterproductive. Particularly, workflows play an essential
role in modern distributed infrastructures like service-oriented Grids and Clouds. As
a starting point, we will study the provision of such optimization support in the con-
text of workflow applications. Third, we are integrating BYG with the GMAC [9]
Java-based P2P protocol to allow applications to discover required execution services
rather than relying on static entry point information. Finally, we will experiment
with real-world applications and more Grid topologies to further validate BYG. We
are gridifying a ray tracing application and a DNA sequence alignment code on
a high-speed wide-area Grid, which is a result of a country-wide Grid initiative of
the Argentinian government to connect academic clusters.
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Programming Grid Applications with GRID Superscalar. J. Grid Comput., Vol. 1,
2003, No. 2, pp. 151–170.

[26] Mateos, C.—Zunino, A.—Campo, M.: On the Evaluation of Gridification Effort
and Runtime Aspects of JGRIM Applications. Futur. Gener. Comp. Syst., Vol. 26,
2010, No. 6, pp. 797–819.

[27] Xhafa, F.—Carretero, J.—Dorronsoro, B.—Alba, E.: A Tabu Search Al-
gorithm for Scheduling Independent Jobs in Computational Grids. Comput. Inform.,
Vol. 28, 2009, No. 2, pp. 237–250.

[28] Wroblewski, P.—Boryczko, K.: Parallel Simulation of a Fluid Flow by Means
of the SPH Method: OpenMP vs. MPI Comparison. Comput. Inform., Vol. 28, 2009,
No. 1, pp. 139–150.

Cristian Mateos received a Ph.D. degree in Computer Science
from UNICEN, Tandil, Argentina, in 2008. He is a Full Teacher
Assistant at the Computer Science Department of UNICEN. His
thesis was on a solution to ease Grid application development
through non-intrusive injection of Grid services.



A Novel Mechanism for Gridification of Compiled Java Applications 1285

Alejandro Zunino received a Ph.D. degree in Computer Scien-

ce from UNICEN in 2003. He is a Full Adjunct Professor at the
Computer Science Department of UNICEN and a research fellow
of the CONICET. He has published over 50 papers in journals
and conferences.

Ramiro Trahsel received a B. Sc. in Systems Engineering

from UNICEN in 2009. He is a Teacher Assistant at the Com-
puter Science Department of UNICEN. His involvement in this
project came from an interest in Grid architectures and tech-
nologies.

Marcelo Campo received a Ph.D. degree in Computer Science

from UFRGS, Porto Alegre, Brazil. He is a Full Associate Pro-
fessor at the Computer Science Department and Head of the
ISISTAN. He is also a research fellow of the CONICET. He has
over 80 papers published in conferences and journals about soft-
ware engineering topics.


