Computing and Informatics, Vol. 30, 2011, 1083-1097

VIRTUALIZING SMARTPHONE APPLICATIONS
TO THE CLOUD

Shih-Hao HuNG, Jeng-Peng SHIEH, Chen-Pang LEE

Department of Computer Science and Information Engineering
National Taiwan University

No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan

e-mail: {hungsh, d97026, d97039}@csie.ntu.edu.tw

Abstract. Smartphone technologies have enabled sophisticated pervasive applica-
tions for mobile users. Still, many intensive applications perform poorly on smart-
phones due to the shortage of resources for computation, data storage, network
bandwidth, and battery capacity. While such applications can be re-designed with
client-server models to benefit from subscribed cloud services, the users are no longer
in full control of the entire application execution, which has raised a serious concern.
Meanwhile, privacy and security are also important issues, and it is an ongoing de-
bate if public cloud services could be trusted with sensitive data. For mobile users
to take full advantage of cloud services, these issues need to be resolved. In this
paper, we propose an innovative framework for mobile users to execute existing An-
droid applications on a personal virtual phone safely in the cloud. Instead of using
a client-server model, the entire virtual phone is mostly controlled by the user to
minimize the intervention from the service provider. Virtualization and encryption
are employed to protect against eavesdropping from cloud providers and network
attackers. To quickly migrate an Android application between the physical phone
and the virtual phone, we use a new application-level checkpointing mechanism and
minimize the state of the application.

Mathematics Subject Classification 2000: 68N25

Keywords: Pervasive computing, smartphone, virtualization, cloud applications,
information privacy, information security, operating system

1084 S. H. Hung, J. P. Shieh, C. P. Lee

1 INTRODUCTION

Smartphone technologies have enabled sophisticated pervasive applications for mo-
bile users. Yet, even the latest smartphones today struggle to perform sophisticated
applications as they are constrained by power consumption, speed of computation,
size of memory, bandwidth of wireless network, etc. [11]. For a demanding job, it
can be beneficial for a smartpohone to offload the job onto a server machine us-
ing the client-server model to get the job done with less time and save the power
consumption on the smartphone [20]. In the age of cloud-computing, many cloud-
based services are available for processing the workload generated by a smartphone
with low amortized operation costs [6]. While the client-server model has been
quite successful so far, the following issues have puzzled the users and application
developers:

Application re-design and deployment: To adopt the client-server model, the
application first needs to be partitioned and a communication protocol is re-
quired to connect the client program and the server program. Then, the service
has to be deployed on a server and made available to the user, which requires
extra efforts and/or costs. For the purpose of offloading the workload in an
application, this is often an overkill.

Network condition and service availability: With the client-server model, the
quality of the service can depend heavily on the network condition. For a per-
vasive application, it is impractical to assume that the smartphone phone can
always connect to the server with a good network condition. The client-server
model would not be able to support the case where the user need to perform the
application without any network connection.

Control of the application: When part of the application is processed by a pub-
lic service provider, the user is no longer in full control of the application. The
service provider may use a proprietary interface to trap the users, increase ser-
vice charges, or go out of business. On the other hand, the user could rent
a server in the cloud and deploy the server program just for personal use. How-
ever, this would not be an attractive option to average users, in terms of the
maintenance effort and the operating costs.

Privacy of personal data: Having personal data processed by a public cloud ser-
vice also gives the service provider the opportunity to access the data and violate
the privacy of the user. In addition to selling personal information to advertis-
ers, social network sites, such as Facebook [5], try to promote the sharing of
personal information, but it is difficult for the users to manage their privacy
setting properly.

Information security: Offloading workload to a public cloud service increases the
security risk. The data propagated over Internet and stored in the server could be
eavesdropped by the service provider or attackers in the middle. For an average
user, it is difficult to know if the service provider is trustworthy or if the server is

Virtualizing Smartphone Applications to the Cloud 1085

secure. For example, an illegal intrusion happened to the PlayStation Network
in April 2011, and put the information of 77 million registered accounts at
risk.

To address the above issues, we propose a framework for a user to create a per-
sonal virtual phone in the cloud and allow the user to migrate the execution of
an existing application between the user’s phone and the virtual phone. The idea is
to utilize the personal virtual phone to eliminate the need for creating unnecessary
public cloud services to offload computationally intensive smartphone applications.
Unlike the client-server model, application redesign is not needed and since the
virtual phone is created and controlled by the user, the privacy/security risk is
significantly reduced by excluding the service providers.

Since the communication cost for migrating a process [17] or a virtual ma-
chine [21] over a mobile network can be prohibitively high, we discuss several strate-
gies to reduce this communication overhead. Then, we further categorize the types
of application data to determine on the necessity and the priority of data synchro-
nization. Since the Android platform is relatively new, we have not seen a similar
approach in any previous publications. We are not aware of any application-level
migration scheme which can migrate existing Android application without re-writing
the application code. In addition to offloading workload from the physical phone,
the framework gives the user the control of the virtual phone and can work with
security measures to protect the information on the virtual phone. It also offers the
opportunity to augment the capability of the physical phone, file sharing service,
automatic data backup, and virus checking, etc.

The rest of this paper is organized as follows. The proposed framework is de-
scribed in Section 2. The migration scheme and the communication overhead are
evaluated in Section 3. The security of the virtual phone and the implementation
of potential value-add features of the virtual phone are covered in Section 4. Sec-
tion 5 surveys the recent related works and compares them with our work. Section 6
concludes this paper by summarizing our findings.

2 VIRTUAL PHONES IN THE CLOUD

Imagine a personal virtual phone which is connected to high-speed network, has
a large storage space, and is capable of performing Android applications several
times faster than any physical phone. The owner of the virtual phone may benefit
from this virtual phone in many ways. The virtual phone may offload intensive
workload from the physical phone to speed up the computation, data access, and
network operations. The same application may run on both the virtual phone and
the physical phone, so the user may launch the application on either phone or has
the application migrated between the two phones. The data of the two phones
are synchronized with a cloud storage. As Android applications become the main
stream, the user may even use the virtual phone to have server or peer-to-peer appli-
cations executed continuously in the background. Since the application is executed

1086 S. H. Hung, J. P. Shieh, C. P. Lee

in an environment owned by the user, it greatly reduces the risks of sending sensi-
tive data to a public cloud service for the aforementioned purposes. In this section,
we propose a practical framework to facilitate the operation of the virtual phone.
We describe the general architecture of the framework and discuss the technical
issues.

As illustrated in Figure 1, creation of a virtual phone is automated by our
framework as the following procedures.

Android 1 (1)

Local Storage 1
/L \
~/ O\

Droid
App2

Local Storage2

Virtual Phone
J

Agent

Virtual Phone

Delegate System (VM)

Server Machine /

[aaS Provider

Fig. 1. Procedures for creating a virtual phone in the cloud

1. Installing our agent program: The user installs and runs our agent program,
which automates the rest of the procedures. The agent also provides the interface
for the user and applications to interact with the virtual phone.

2. Allocation of a delegate system: The agent allocates a delegate system to
host the virtual phone by subscribing to a virtual machine from a trusted in-
frastructure as a service (IaaS) provider. The delegate system in our prototype
runs the Linux operating system and may host multiple virtual phones to save
the operation cost.

3. Setting up a virtual phone: The agent sets up a virtual phone on the dele-
gate system using the Google Android Emulator, an open-source software which
employs the QEMU [8] virtual machine monitor (VMM) software to emulate the
reference Android hardware defined by Google. The QEMU VMM is capable of
executing ARM binary codes on an x86-based server with a fast emulation speed,
thanks to its a dynamic binary translation scheme. If binary compatibility is not
needed by the user, the virtual phone can be set up with Android-x86, which is

Virtualizing Smartphone Applications to the Cloud 1087

much faster than the Android Emulator, but would only support applications
written in Dalvik [1].

4. Cloning of the operating environment: The agent clones the operating en-
vironment of the physical phone or uses a standard image stored in the delegate
system to create a fresh virtual phone. An exact clone of the operating envi-
ronment should increase the compatibility between the virtual phone and the
physical phone. For applications which require vendor-specific libraries or sys-
tem services, a full clone is necessary. For other (standard Android) applications,
a standard image would be recommended to save the communication costs for
cloning the physical phone and accelerate the creation of the virtual phone.

5. Migration of applications: The agent on the physical phone takes the com-
mands from the user and relays the commands to the virtual phone. The user
may request the agent to migrate a running application from the physical phone
to the phone, or vice versa. To migrate an application, the state of the applica-
tion and the working file set have to be migrated. As the latency for migrating
a live (executing) application may affect the user experience, it is critical to re-
duce the latency by minimizing the size of the application state and identifying
the working file set.

6. Synchronization of applications and user data: As the physical phone and
the virtual phone may operate on the same set of files in parallel, the agent
programs on both phones need to collaborate to keep the application packages
and user data consistent and coherent on both phones. Since continuous syn-
chronizing modified files generate a large amount of network traffics and is often
unnecessary, we should pay attention to the policies and protocols for the syn-
chronization of files.

Procedures 1 to 4 are performed once to set up a virtual phone initially. De-
pending on the need of the user, the actual construction of the framework, and the
network condition, the set up time for a virtual phone ranges from a few seconds
to a few hours. Setting up a virtual phone with a standard Android OS image to
offload portable Android application written in Dalvik is very quick, which makes
it practical to locate a nearby server and create a virtual phone on demand.

On the other hand, Procedures 5 and 6 are involved in the daily use of the
virtual phone. The latencies caused by these two procedures are important to user’s
experience, but the issues are more sophisticated. We shall further address the
performance issues in the next section.

3 MIGRATION OF ANDROID APPLICATIONS

For migrating a server application, it is commonly done by transferring the snapshot
image of the virtual machine that runs the application. Unfortunately, this would be
impractical to the migration of a mobile application. Given the fact that a snapshot
image can easily reach 256 MB for today’s entry-level Android phones, transferring

1088 S. H. Hung, J. P. Shieh, C. P. Lee

the image over a wireless network should take a long time (e.g. roughly 10 minutes
via a 7.2 Mbps HSDPA network). Obviously, it is an overkill instead of migrating
the entire system, if what the user wants is to migrate an application.

Process migration is an alternative approach [19]. Unfortunately, process mi-
gration is practically too complicated, as it requires an extensive support from the
underlying operating system. Even with a working process migration scheme, the
working set of an application process can still be large enough to cause a long latency
over a mobile network.

The migration scheme in our framework is designed to leverage the applica-
tion pause-resume interface defined by the Android application framework [2]. The
application pause-resume interface is specifically designed to support multitasking
with limited processing power on an Android phone. When an Android application
is switched to the background, it may keep running, but the Android runtime sys-
tem may opt to close it when the available memory on the phone is running low.
In order to have the application resume execution later, the application developer
may use the pause interface to have the application state saved in the non-volatile
memory (e.g. flash memory) and use the resume interface to have the application
continue its execution from the previously saved point. This pause-resume interface
can be regarded as an application-level checkpointing scheme and used for migrating
applications across different Android phones. Since many existing Android applica-
tions already follow this paradigm, our migration scheme can migrate them without
modifying them. We also encourage application developers to take advantage of the
pause-resume interface not only to make their applications more user friendly, but
also to enable application migration between Android phones.

The migration scheme in our framework is illustrated step-by-step in Figure 2.
On the left-hand side:

1. The agent sends a signal to the application and has the application enter the
OnPause function.

The application saves its state in the OnPause function and

informs the agent when the state is saved.

The agent reads the state and

SO el

sends the state to the agent on the other side.
Then, on the right-hand side:

6. The agent saves the state and

7. starts the application (or copies the application from the other side if it does
not exist).

8. The application resumes by calling the OnResume function and
9. resumes the execution after restoring the application state.

Our first case study is a peer-to-peer (P2P) file exchange application program,
called androidtorrent [4]. The purpose is to illustrate the application migration

Virtualizing Smartphone Applications to the Cloud 1089

[aa$
Android / \
(\ (5)Trangfer / (7) Create AP \

. state| . :

Android Agent Agent Arximld
App pp

4
v — 6) Sqve states |] !
(1)OnPause\‘ ,:" /3)Inform Agent | (8)0ani,7hme / (9) Read states

X

7

1

T /

! f /

android.os.B“undIe ana‘rmd.os.BundIs’,
\

. T
i
\ 1

X L

(2) save states; /(4)Read states

| savedInstanceStat |

| savedInstanceStat |

\ Memory /

Memory

\Virtual Environment j
\ Delegate System j

Fig. 2. Illustration of application migration to the cloud

procedure and the capability of our framework. P2P is a distributed network for
participants to share their resources without a centralized coordinator [23]. The
working set in androidtorrent can be quite large when the user exchanges many files
with many peers. In practice, while P2P network is popular on personal computers
(PC), most smartphone users would not run this application since it is relatively
slow to exchange files over a mobile network and the application constantly consumes
processor/memory /network /battery resources on the phone.

As we enter the so-called post-PC' era, like androidtorrent, many PC applications
face the same challenge on smartphones. While there are prozy services in the cloud
which would like to replace the P2P client program, as we mentioned in the beginning
of this paper, the user would need to subscribe to a service, and the service provider
may be aware of the activities and the files processed by the server. So far, we cannot
find a proxy program to install the same service on a private server by ourselves.
Even if we found one, it would not be an elegant solution for an average user. It is
a dilemma: on one hand, it would take some effort and cost for the user to maintain
a private server; on the other hand, if a public service is chosen, the privacy of the
data may be a concern.

Obviously, this type of workload would be best handled by a virtual phone in
the cloud. In our experiment, we created a virtual phone, started androidtorrent
in a physical phone, selected the files to exchange on the physical phone, and then
migrated androidtorrent to the virtual phone. During the migration, the agent
transferred the states saved by androidtorrent, approximately 320 Kbytes of data,

1090 S. H. Hung, J. P. Shieh, C. P. Lee

to the virtual phone over a 3G mobile network and resumed execution in 3.8 se-
conds.

As androidtorrent proceeded its execution on the virtual phone, it constantly
created new files and modified existing files. If our framework were to enforce
continuous synchronization of the filesystems between the physical phone and the
virtual phone, a lot of unnecessary network traffics would be generated, since the
user has no need for those temporary files. In our framework, we adopt a version of
lazy synchronization policy to address this problem. When a file is modified on one
phone, the copy on the other phone is invalidated. It is not until the invalidated
file is accessed, the file would not be synchronized by the framework. On the other
hand, there are system data and files shared with other applications that need to be
synchronized immediately, for example contact (addressbook). Since most Android
applications are well structured, it is relatively straightforward for the framework
to identify the system data and shared files. The agents on both phones monitor
and synchronize these files as soon as possible, and work jointly to ensure that no
race condition occurs in the synchronization. The details are discussed later in this
section.

As shown in Table 1, androidtorrent performed significantly better on the virtual
phone hosted by a PC in our laboratory, thanks to the faster processor and the fixed
ADSL network. The results were shown to prove the concept of our framework.
Although the subscribed 3G network offered a 7.2 Mbps peak bandwidth, its actual
connection speed depended on many issues and were not as reliable as the ADSL
network. The execution of androidtorrent consumed a lot of processor power and the
memory space on the Google G1 phone and could have easily drained the battery
power completely in a couple of hours.

Phone Processor Network/Max. Bandwidth | Data Transfer
Google G1 528 MHz ARM 3G HSDPA/7.2Mbps 36 MB/Hr
Virtual Phone | 2.6 GHz Intel Core i7 | ADSL/2 Mbps 240 MB/Hr

Table 1. A case study with androidtorrent

In addition to androidtorrent, we have studied many other Android applications
to further evaluate the cost of migration. We categorized the files associated with
an Android application into five types: program package, configuration files, database
files, cache buffers, and saved state files when the application is on pause. Table 2 lists
the the total size of the file(s) in each category for ten popular Android applications.
To migrate a new application to the virtual phone, the package has to be transferred
only once. The configuration files and database files are monitored closely in our
framework, so any modifications to these files are synchronized immediately via the
shared storage. For example, Contact Provider is part of the Android middleware
which maintains a database for applications to find contact information, and it is
important to synchronize the database files even though Contact Provider is not
running on the virtual phone. The cache buffers are primarily used by streaming
multimedia application, such as YouTube, to prefetch multimedia contents. Finally,

Virtualizing Smartphone Applications to the Cloud 1091

the state files for an application need to be synchronized only when the application
is being suspended and migrated onto another phone.

Applications Package | Config. | Database | Cache Buffer | State
Sudoku 740 888 146 0 0 183
AndFTP 562 795 0 0 0 1464
aBTC 92432 0 0 0 144
YouTube 328622 0 0 397622 577
Music Download 438256 0 0 0 119
Music Player 339323 0 0 0 247
Google Translate 951909 0 0 0 0
Android MMS 356392 711 0 0 0
Google Gmail 489403 0 0 0 0
Contacts Provider 0 0 57344 0 0
Average 401273 204 5213 36147 249
Unit: Byte

Table 2. Application states and related files

The size of a program package varies from 92 KB to 951 KB, which would take
a few seconds to transfer via a mobile network. The communication cost for synchro-
nizing files in these two categories should not be an issue for typical applications, as
the configuration files are quite small, and the contact database should not be up-
dated frequently by the user. Since the contents in such cache buffers are constantly
changing and can be re-fetched after being thrown away, our framework labels these
files as mo-need-for-sychronization to reduce the communication costs. As shown in
Table 2, the cost for transferring state files are minimal. Web-based applications
such as Google Translate, Android MMS, Gmail are state-less without any state files
at all, while the other applications have small state files which are less than 1.5 KB.

Finally, our framework can be used to migrate applications from one physical
phone to another physical phone or a computer for a user who would like to continue
his/her work after switching to a new phone/computer. The user could use a virtual
phone to bridge the migration. In our experiment, we were able to migrate Android
applications from a physical phone to a virtual phone, and from the virtual phone to
an Android-based notebook computer. For applications which are written entirely
in Dalvik, we executed the application natively without translating the binary code
and resulted in significantly better performance on the computer. Figure 3 shows
the benefit of migrating computer-intensive applications to a faster device. Even
with an entry-level Intel Atom processor, the Acer D255 netbook still outperformed
the Google G1 phone by 4.9 to 6.4 times.

4 SECURITY ENHANCEMENT FOR VIRTUAL PHONES

While a variety of secure threats are raised by virtual computing environments [14],
we believe the operations on a virtual phone hosted by an IaaS provider should still

1092 S. H. Hung, J. P. Shieh, C. P. Lee

¥ Google-G1 Phone, 528MHz ARM Acer D255, 1.6GHz Intel Atom
7.00
6.00
5.00 —
4.00 |
3.00 —
2.00 —
1.00 7] -
0.00 - T I T . T I T I T I T T I

& & & A N N
Q,bb (_;\\ <('<\ 50 Q&o 0\/ ’],\' ;00
< & & & & & & N
S < & & i RS &
- [S) %
& 9 B N & &
& & ST &
é’\é‘ > A
< & N
S e
AN
o

Fig. 3. Normalized benchmark performance

be more secure than having personal data processed and stored on a software as
a service (SaaS) provider. As the two layers of virtual machines help protect the
virtual phone, it is far more difficult for an employee working for the service provider
to peek into the virtual phone. To further prevent the intervention from the service
provider or attackers, sensitive data in the memory and the storage should better
be encrypted.

We envision a new cloud service Virtual Phone as a Service (VPaaS) based
on the proposed framework. For the user, the framework should take care of the
burden of securing the data stored in the virtual phone and protecting the com-
munication traffics between the virtual phone and the physical phone. For the
service provider, the framework should work with hardware-based security mecha-
nisms such as the Trusted Platform Module (TPM) [24] to enhance the security of
the server system. Having a hardware mechanism to store the encryption keys and
to perform cryptographic operations is key to avoid data theft from the personnel
working for the service provider. For the virtual phone, the hardware mechanism
has to be virtualized. For example, IBM’s vIPM [9] supports higher-level services
for establishing trust in virtualized environments and for supporting live migration.
It is possible to integrate such a virtualization scheme into our framework in the
future.

Virtualizing Smartphone Applications to the Cloud 1093

Even with a hardware mechanism, the initial set of encryption keys have to be
distributed to the user securely. If the provider of VPaaS happens to be the provider
of the mobile network, it would be convenient for the provider to store in the SIM
card the unique initial keys corresponding to a set of virtualized TPM’s. With the
keys in the SIM card, the agent on the physical phone may establish a connection
using the virtual private network (VPN) [22] with the agent on the server to protect
the communications between the two agents.

Regarding to the storage on the virtual phone, our prototype includes an en-
crypted virtual storage to both the physical phone and the virtual phone over
a FUSE-based [3] user-space encrypted filesystem, i.e. encfs — encrypted filesys-
tem for FUSE. Since the files are encrypted and hashed, attackers from another
virtual machine on the same host or in the middle of the network will be unable to
retrieve and manipulate the contents in the files. As mentioned above, it is critical
to employ a hardware mechanism such as vI'PM to store the master encryption keys
and perform the encryption procedure.

The fact that a virtual phone is always connected to the Internet could make
the virtual phone a target for a hacker. It is important for the VPaaS provider to
hide the virtual phones behind the firewall and not to allow a third party to figure
out the association between a virtual phone and its physical phone counterpart.
Intrusion detection mechanisms should be adopted by both the service provider and
the virtual phone to protect against hackers outside and inside the firewall.

On the other hand, the virtual phone can be used to augment the security of the
physical phone. Anti-Virus scan can be a heavy-weight task that can be performed
better by a cloud-based service such as CloudAV [16] or the virtual phone in our
case. The virtualization layer which hosts the virtual phones may be integrated
with various security measures such as the detection of vulnerabilities and network
attacks [18, 25, 10].

As a case study, we implemented a detection mechanism for the buffer overflow
attacks (BoA) in our virtual phone framework.

5 RELATED WORKS

It was shown that remote execution saved a large amount of power for mobile com-
puters [20, 11], but partitioning of applications for remote execution has been a chal-
lenge for researchers. Spectra [13, 7] proposed to monitor the current resource avail-
ability and dynamically determine the best remote execution plan for an application.
Cyber foraging [7] used surrogates to improve the performance of interactive appli-
cations and distributed file systems on mobile clients. MAUTI [12] proposed to reduce
the programming efforts by automating program partitioning with the combination
of code portability, serialization, reflection, and type safety.

Without application partitioning, methods have been developed to migrate the
entire application execution to a remote server. Process migration and virtual ma-
chine migration have been two common approaches to migrate execution across

1094 S. H. Hung, J. P. Shieh, C. P. Lee

the network. The ISR system [21] emulated the capabilities of suspend/resume
functions in a computer system and migrated the system by storing the snapshot
image of a virtual machine in a distributed storage system. Zap [17] introduced
a POD (PrOcess Domain) abstraction, which provided a collection of processes
with a host-independent virtualized view of the operating system, so as to support
a general-purpose process migration functionality, but it did not allow live migra-
tion. Live migration [15] achieved rapid movement of workloads within clusters
and data centers with minimal service downtimes by continuously transmitting the
changes in a virtual machine to another system, but at the cost of communication
overhead.

6 CONCLUSIONS

In this paper, we presented a framework to automate the creation of a virtual phone
and migrates live Android application faster than traditional methods. Compared
to a conventional client-server model, our approach does not require the developers
to redesign their applications and offers an effective method for the user to control
remote execution.

Our preliminary experimental results showed that our virtual phones were capa-
ble of intensive workloads and our efficient application-level migration method was
suitable for mobile network. The strategies that we developed to reduce the network
traffics for application migration and data synchronization are important to the user
experience. We also discussed how to enhance the security of a virtual phone service
and showed that a virtual phone can be equipped with security measures to protect
the system against network attacks. More functionalities, such as remote backup,
file sharing, virus scan, and malware detection, could be conveniently integrated
into our framework in the future to make a virtual phone more capable and secure.
We are designing the API for Android application developers to take advantage of
our framework.

A cknowledgement

This work was supported in part by a grant from the National Science Council
(98-2220-E-002-020) and a grant from Ministry of Economic Affairs (98-EC-17-A-
01-S1-034).

REFERENCES

[1] http://developer.android.com/guide/basics/what-is-android.html.

[2] ANDROID DEVELOPERS WEB SITE. AVAILAIBLE ON: http://developer.android.
com/.

[3] Filesystem in Userspace web site. Availaible on: http://fuse.sourceforge.net/.

Virtualizing Smartphone Applications to the Cloud 1095

[4]
[5]

(6]

[7]

8]

[9]

Google Code Project web site. Availaible on: http://code.google.com/.

Acquisti, R.—GRross, R.: Imagined Communities: Awareness, Information Shar-
ing, and Privacy on the Facebook. In: Proceedings of the 6" Workshop on Privacy
Enhancing Technologies 2006, pp. 36-58.

ArRMBRUST, M.—FoX, A.—GRIFFITH, R.-JOosepH, A.D.—Karz, R.H.—
Konwinskl, A.—LEE, G.—PATTERSON, D.A.-RABKIN, A.-Stoica, I.—
ZAHARIA, M.: Above the Clouds: A Berkeley View of Cloud Computing. Tech. Rep.
UCB/EECS-2009-28, EECS Department, University of California, Berkeley 2009.

BaraN, R.—FLINN, J.—SATYANARAYANAN, M.—SINNAMOHIDEEN, S.—
YANG, H.I.: The Case for Cyber Foraging. In: Proceedings of the 10" ACM
SIGOPS European Workshop 2002, pp. 87-92.

BELLARD, F.: QEMU, a Fast and Portable Dynamic Translator. In: Proceedings of
the annual conference on USENIX Annual Technical Conference 2005, pp. 41-46.

BERGER, S.—CACERES, R.—GoLDMAN, K.A.—PEREZ, R.—SAILER, R.—
VAN DOORN, L.: VTPM: Virtualizing the Trusted Platform Module. In: Proceed-
ings of the 15™ Conference on USENIX Security Symposium 2006, Volume 15,
USENIX Association, Berkeley, CA, USA 2006, http://dl.acm.org/citation.cfm?
1d=1267336.1267357.

CHEN, C.C.—Hung, S.H.—LEE, C.P.: Protection of Buffer Overow Attacks
via Dynamic Binary Translation. In: International Conference on Reliable and Au-
tonomous Computational Science 2010.

CHuN, B. G.—MANIATIS, P.: Augmented Smartphone Applications Through Clone
Cloud Execution. In: Proceedings of the 12" Workshop on Hot Topics in Operating
Systems 2009, p. 8.

CuUERvO, E.—BALASUBRAMANIAN, A.—Ki Cuo, D.—WoLMAN, A.—
SAROIU, S.—CHANDRA, R.—BaAHL, P.: MAUI: Making Smartphones Last
Longer with Code Offoad. In: Proceedings of ACM MobiSys 2010, pp. 49-62.
FLINN, J.—NARAYANAN, D.—SATYANARAYANAN, M.: Self-Tuned Remote Execu-
tion for Pervasive Computing. In: Proceedings of Hot Topics in Operating Systems
2001, pp. 61-66.

GARFINKEL, T.—ROSENBLUM, M.: When Virtual Is Harder Than Real: Security
Challenges in Virtual Machine Based Computing Environments. In: Proceedings of
the 10t Conference on Hot Topics in Operating Systems 2005, Volume 10, p. 20.
KEeir, C.C.—CrLARK, C.—FRraser, K.H.S.—Hansen, J.G.—JuL, E.—
LimpacH, C.—PRATT, I.—WARFIELD, A.: Live Migration of Virtual Machines.
In: Proceedings of the 2" ACM/USENIX Symposium on Networked Systems De-
sign and Implementation 2005, pp. 273-286.

OBERHEIDE, J.—VEERARAGHAVAN, K.—COOKE, E.—FLINN, J.—JAHANIAN, F.:
Virtualized In-Cloud Security Services for Mobile Devices. In: Proceedings of the
First Workshop on Virtualization in Mobile Computing 2008, pp. 31-35.

OsSMAN, S.—SUBHRAVETI, D.—Su, G.—NIEH, J.: The Design and Implementa-
tion of Zap: A System for Migrating Computing Environments. In: Proceedings
of the Fifth Symposium on Operating Systems Design and Implementation 2002,
pp. 361-376.

1096 S. H. Hung, J. P. Shieh, C. P. Lee

(18]

QiN, F.—Wane, C.—Li, Z.—KiM, H.S.-Zuou, Y.—Wu, Y.: Lift: A Low-
Overhead Practical Information Ow Tracking System for Detecting Security Attacks.
In: Proceedings of the 39" Annual IEEE/ACM International Symposium on Mi-
croarchitecture 2006, pp. 135-148.

Ricas, R.—WALDO, J.—WOLLRATH, A.: Pickling State in the JAVA System. In:
Proceedings of the 2" USENIX Conference on Object-Oriented Technologies 1996,
pp- 241-250.

RUDENKO, A.—REIHER, P.—PoPEK, G.J.—KUENNING, G. H.: Saving Portable
Computer Battery Power Through Remote Process Execution. SIGMOBILE Mob.
Comput. Commun. Rev. 2, pp. 19-26 (1998).

SATYANARAYANAN, M.—GILBERT, B.—Touprs, M.—ToLiA, N.—SURIE, A.—
O’HALLARON, D.R.—WoLBACH, A.—HARKES, J.—PERRIG, A.—FAR-
BER, D.J.—KozucH, M. A.—HELFRICH, C.J.—NATH, P.—LAGAR-
CaviLLA, H.A.: Pervasive Personal Computing in an Internet Suspend/Resume
System. IEEE Internet Computing, Vol. 11, 2007, No. 2, pp. 16-25.

ScaMIDT, A.—KUNTZE, N.—KASPER, M.: On the Deployment of Mobile Trusted
Modules. In: Proceedings of the Wireless Communications and Networking Confer-
ence 2008, IEEE, pp. 3169-3174.

SCHOLLMEIER, R.: A Definition of Peer-to-Peer Networking for the Classification of
Peer-to-Peer Architectures and Applications. In: Proceedings of the First Interna-
tional Conference on Peer-to-Peer Computing 2001, pp. 101-102.

SEVING, P. E.—STRASSER, M.—BASIN, D.: Securing the Distribution and Stor-
age of Secrets With Trusted Platform Modules. In: Proceedings of the First IFIP
TC6/WG8.8/WG11.2 International Conference on Information Security Theory and
Practices: Smart Cards, Mobile and Ubiquitous Computing Systems 2007, pp. 53—66.

SuH, G. E.—LEE, J. W.—ZHANG, D.—DEVADAS, S.: Secure Program Execution
via Dynamic Information on Tracking. In: Proceedings of the 11" International Con-
ference on Architectural Support for Programming Languages and Operating Systems
2004, pp. 85-96.

Shih-Hao HUNG joined the Department of Computer Science
and Information Engineering at National Taiwan University as
an Assistant Professor in 2005. His research interests include
cloud computing, parallel processing, embedded systems, and
pervasive applications. He worked for the Performance and
Availability Engineering group at Sun Microsystem Inc. in Menlo
Park, California (2000-2005) after he completed PostDoc
(1998-2000), Ph.D. (1994-1998) and M. Sc. (1992-1994) train-
ing in University of Michigan, Ann Arbor. He graduated from
National Taiwan University with a BS degree in Electrical En-
gineering in 1989.

Virtualizing Smartphone Applications to the Cloud 1097

Jeng Peng SHIEH received his B.Sc.E.E. and M. EMBA de-
grees from the National Cheng Kung University, Taiwan, in 1986
and 2007 respectively. He is a Ph.D. candidate in computer
science and information engineering of National Taiwan Univer-
sity from 2008. He was a system engineer at BDC Co., Hsinchu,
Taiwan (1988-1991), a senior and chief system engineer of RPTI,
Taipei (1991-1996), the founder of a software house for design-
ing Internet e-commerce system (1996-2002), the head of R & D
department of PROTON Inc., Taiwan (2003—2009). His research
interests include Linux-based mobile system design, power and
performance optimization, system virtualization, and migration scheme leveraging clus-
tering/cloud computing.

Chen-Pang LEE received the B. Sc. Degree in Electrical Engi-
neering from Fu Jen Catholic University in 1996, and the M. Sc.
degree in Control Engineering from National Taiwan University
of Science and Technology in 1998. He is currently a Ph.D. can-
didate in information engineering in National Taiwan University.
His research interests include wireless sensor networks and stor-
age systems, especially for data synchronization and security.

