
Computing and Informatics, Vol. 29, 2010, 251–280

HIGHER-ORDER ATTRIBUTE SEMANTICS
OF FLAT DECLARATIVE LANGUAGES

Pavel Grigorenko, Enn Tyugu

Institute of Cybernetics

Tallinn University of Technology

Akadeemia tee 21

12618 Tallinn, Estonia

e-mail: {pavelg, tyugu}@cs.ioc.ee

Manuscript received 19 August 2008; revised 11 May 2009
Communicated by Ulrich Eisenecker

Abstract. A technique is described that provides a convenient instrument for im-
plementation of semantics of simple declarative languages called flat languages.
Semantics of a specification is defined in the paper as a set of programs derivable
for solvable goals. We introduce higher-order attribute models that include more
control information than conventional attribute models and explain the algorithm
for dynamic evaluation of attributes on these models. A visual tool CoCoViLa
is briefly described as an instrument for implementing attribute semantics of flat
languages.

Keywords: Higher-order attribute models, flat languages, attribute semantics of
declarative languages, synthesis of programs, domain specific languages

Mathematics Subject Classification 2000: 03B60, 68N19, 68T15, 68T30,
68T35, 68U20

1 INTRODUCTION

After Donald Knuth introduced attribute grammars for precise representation of se-
mantics of programming languages in 1968 [7], they have become widely used tools
in compiler construction. However, this technique is seldom applied to process-
ing declarative domain specific languages, and if applied, it works only for a part

252 P. Grigorenko, E. Tyugu

of the semantics of a language. The reasons are usually a weak syntactic struc-
ture of a domain specific language, and a great variety of domain specific semantic
functions whose reuse in different domains is impossible. This has prevented the
development of widely applicable semantic tools for declarative domain specific lan-
guages.

Our goal is to define a class of declarative languages that will have well-defined
semantic properties, to propose a theoretically sound method of implementation
of semantics of these languages, and to test it in practice. In the present work
we first define a class of simple declarative languages – flat languages. Second,
we describe a method of implementation of semantics of flat languages and show
its practical applicability. The technique is an extension of attribute methods by
explicitly introducing attributes of higher order. An essential contribution of the
paper is the explanation of a method of evaluation of higher-order attributes in
terms of maximal linear branches of the synthesized algorithm in Section 8. In
a declarative language, like in Prolog, one may need a goal in order to get a program
from a specification. We also use goals in addition to specifications. Unlike semantics
of imperative languages, our semantics provides a set of programs for a specification –
a program for every solvable goal.

Let us consider attribute semantics of a traditional programming language as
defined originally by Knuth [7] and explained in terms of attribute models by Pen-
jam [12]. If we look at an attribute model of a production of the language, or at an
attribute model of a syntax tree of a text written in this language, we can see that
it is just a collection of variables bound by functional dependencies. In other words,
it is a functional constraint network representing the meaning of a production or
a text. There is little control information in it. We call it a simple attribute model.
In the present work we extend attribute models by allowing attribute dependencies
to be, besides functional dependencies, also higher-order functional dependencies.
This gives us a possibility to express more control of computations in an attribute
model itself. Second, we consider declarative languages where a text can be not only
a specification of a single program, but also a description of a device or a system (its
model) that allows to ask several different questions about the specified thing. This
means that a program can be obtained from a declarative specification and a goal
(that is, a problem statement describing what is needed). We have restricted the
set of specification languages considered here to structurally very simple languages
that we call flat languages.

The present paper is organized as follows. In the next section we give a formal
definition of the flat languages and bring out two examples. Then we introduce
a core language and its standard extension. We discuss simple attribute models
and attribute evaluation on them in Sections 5. In Section 6 we introduce attribute
semantics of the core language. After that we introduce the central results of the
work – higher-order attribute models and evaluation of attributes on them in Sec-
tions 7 and 8. An implementation of our approach to attribute semantics of flat
languages is described in Section 9, and examples are given in Section 10. Related
work is discussed in Section 11.

Higher-Order Attribute Semantics of Flat Declarative Languages 253

2 FLAT LANGUAGES

A flat language is a declarative language suitable for composing typed objects into
descriptions of concepts and/or systems (a mathematical model in a broad sense) by
connecting their components by equalities. We call it flat, because it has very little
syntactic structure, in particular it does not contain explicit looping and branch-
ing statements. The meaning of a text in a flat language is hidden in the classes
of objects and in the way the objects are connected. An inheritance relation is
defined on types: a type is a subtype of another type that is called its super-
type if and only if the objects of this type have all properties of the latter type.
This is single inheritance without overriding. A connection is allowed only be-
tween two components whose types are the same or have one and the same super-
type.

We define flat languages as follows. A finite set of primitive types and a countable
set of names are given.

New types are defined by a construction

a : (a1 : s1, . . . , ak : sk),

where a is a name given to a new type. The construction ai : si defines a component

of a, where ai is a unique name of a component, i.e. ai 6= aj for i 6= j, and si is a name
of a known type, i = 1, . . . , k, j = 1, . . . , k. We can refer to a component ai of a
as a.ai. The new types constructed this way are called compound types. In the type
theory such typing is called nominal [14], where types as well as their components
are always defined with names.

We define ports that are connection points of typed objects as follows. Let us
have a type b that has a component b.ai. Then

(b.ai, x)

defines a port with a name x and representing a component b.ai of b. The type of
a port is equal to the type of a component it represents.

Types of objects in a flat language are represented by classes. A class includes
a compound type as a part of it. A class is defined by a construction

c : (s, (p1, . . . , pm), sem),

where c is the name of a class, s is its type, p1, . . . , pm are ports representing some
components of s, and sem is a definition of the local semantics of the class that can be
defined only in terms of s, i.e. using only the components of s. Local semantics sem
is not defined here, it depends on a concrete flat language. There are no generally
prescribed means for defining sem; however, we assume that sem is always defined
computationally.

A text in a flat language is a declarative specification of an object, a model or
a process. Text is a sequence of statements. The syntax of a flat language is given

254 P. Grigorenko, E. Tyugu

by a set of classes and by the following simple rules in EBNF1 as follows:

Text ::= {Statement;}

Statement ::= Object|Binding

Object ::= ClassName ObjectName

Binding ::= ObjectName.PortName=ObjectName.PortName.

Ports in a binding must have one and the same type (or common supertypes in
the case of existence of inheritance which is allowed, but not discussed here).

Semantics of a flat language depends only on the semantics of its classes and on
the semantics of bindings. (This is the flatness!) Semantics of bindings is as follows:

a) if ports in a binding have a primitive type, then the components bound by the
binding are in every aspect (except their names) the same;

b) if ports in a binding have a compound type, then a binding is recursively defined
also for all pairs of the respective components of a type. Example: the binding
p.x = q.y for the ports x and y that have the type defined as a : (a1 : s1, . . . , ak :
sk) defines also the bindings p.x.a1 = q.y.a1, . . . , p.x.ak = q.y.ak as well as
bindings for all components of the types of a1, . . . , ak.

Let us look at a small example of a flat language that is for specifying reliability
of devices through the reliabilities of their components and the structure of a device.
Types are double, Basic, Parallel, Series. The type double is a primitive type for
numbers. The type Basic represents components of a device that have a value of
reliability, let it be a probability of a correct operation of a device or a component
during a given period of time. This probability is represented by a variable p that is
of the type double and is a component of an object of type Basic. Let us introduce
also another variable q that expresses a probability of error occurring during the
given period of time. The type Parallel represents a substructure of a device that
is composed of two parts denoted by part1 and part2 in such a way that if at
least one part works correctly, then the composition works correctly. These parts
are of type Basic. The type Series represents a substructure of a device that is
composed of two parts denoted by part1 and part2 in such a way that it operates
correctly if both parts operate correctly. These parts are of type Basic. This is
a rather typical example of a small domain-specific language in engineering. There
are some computations that can be performed on the objects of type Parallel and
Series. These computations and the notations introduced above are summarized in
Table 1.

Some words have to be said about the Computations column in Table 1. We see
equations there, and one may expect that these equations can be used in different
ways, not only for computing the value of a variable on the left side of an equation.

1 For brevity, here and in further sections we use quotation marks for specifying terminal
symbols only when it is required to distinguish them from the syntax of EBNF.

Higher-Order Attribute Semantics of Flat Declarative Languages 255

Name of type Supertype Components Computations Comment

double primitive
numeric type

Basic double p p+ q = 1
double q

Parallel Basic Basic part1 q = part1.q ∗ part2.q
Basic part2

Series Basic Basic part1 p = part1.p ∗ part2.p
Basic part2

Table 1. An example of a flat language

This column presents a computational semantics of the types to a user not interested
in an implementation of the language. The implementation can be made in several
ways. In particular, one could extract two assignments from the equation for Basic:

p:=1-q

q:=1-p,

or one can use a numeric equation solver for solving the equation. We postpone the
discussion of the implementation now and return to it in Section 10.

An example written in the language of reliability is as follows:

Basic c1, c2, c3;

c1.p=0.99;

c2.p=0.97;

Series sr;

sr.part1=c1;

sr.part2=c2;

Parallel pr;

pr.part1=sr;

pr.part2=c3;

This is a description of five objects c1, c2, c3, sr, pr connected by means
of 4 equalities, and assignment of values to primitive objects c1.p, c2.p that are
components of objects c1 and c2. This specification can be presented visually, as
soon as one has means to represent objects of types Basic, Parallel, Series, as well
as a possibility to connect ports and to introduce values of primitive types. A visual
representation of the specification is shown in Figure 1. This text (or the scheme in
Figure 1) can be used as a specification of several computations. A computation is
defined as soon as a goal is given (cf. Prolog). A goal states the input and the output
of a computation. For example, the following two goals are interesting (although
there are more meaningful goals):

c3.p->pr.p

and

pr.p->c3.q.

256 P. Grigorenko, E. Tyugu

The first goal requires finding the resulting value pr.p of reliability of the device
pr depending on the reliability value c3.p of the component c3, and the second
requires finding the probability of error c3.q of the component c3 that gives the
given reliability of device pr.

Fig. 1. Visual specification in a flat language

A more interesting flat language is a language of attribute semantics of a context
free language. Let us have a context free language with a syntax given by rules of
the form

p0 ← w1p1w2p2 . . . wkpk

where p0, . . . , pk are nonterminal symbols of the language and w1, . . . , wk are pos-
sibly empty sequences of terminal symbols. Let the semantics of the language be
given as an attribute grammar. First, we introduce a type tp for each nonter-
minal symbol p that includes the attributes of the symbol p as its components.
Then we introduce types for rules as follows. A type of a rule r has components
c0, . . . , ck with respective types tp0, . . . , tpk for its nonterminal symbols p0, . . . , pk.
Beside that, a type of rule r includes attribute dependencies as defined in the at-
tribute grammar. This language is a flat language. By the definition of an attribute
grammar, this language is sufficient for expressing attribute semantics of any sen-
tence of the given language. A specification in the flat language, let us call it an
attribute model, can be built from an abstract syntax tree of a text [12]. This
specification can be used for computing the synthesized attribute of the nonter-
minal symbol representing the whole text. This is a dynamic evaluation of at-
tributes of a language given by an attribute grammar. In order to be able to
express attribute semantics of a language by means of one single specification in
a flat language and to compose a static attribute evaluation algorithm, we have
to extend the expressive power of types. This will be done later in the present
paper.

Higher-Order Attribute Semantics of Flat Declarative Languages 257

Good examples of flat languages are visual languages where specifications are
schemes [4], e.g. the language of class diagrams of UML and many simulation lan-
guages. Even many popular special purpose specification languages like, for in-
stance, VHDL are in essence flat languages, although they have some features that
are difficult to express through the local semantics of objects.

3 CORE LANGUAGE

In the present section we give syntax and intuitive semantics of a concrete flat
language that can be used for two purposes:

• As a program specification together with some goal.

• For specifying a new type.

This language includes more features than presented in the example given in
Section 2. The main extension is the usage of programs as implementations of
functional types. We assume that a concrete implementation of the core language
is based on some programming language that we call a base language. We have
an implementation of flat languages with Java as the base language, see Section 9.

Types in the core language are primitive types, compound types and functional
types:

a primitive type is any type of the base language (including reference types of
Java in our implementation);

a compound type is introduced by writing its specification in the core language.
In the general terms of flat languages, a compound type of our core language is
a class. In the core language, all components of a compound type are ports and
semantics of a class is represented by functional dependencies;

a functional type is introduced by writing its specifying formula and it is used
only once in a specification for creating a functional dependency.

Specifications in the core language are written using five kinds of statements in
the following syntax:

Specification ::= ClassName :′ (′[{Inherit;}]{(Decl|Bind|V al|FuncDep);}′)′

1. Declaration of object:

Decl ::= Type Id

Type ::= any|PrimitiveType|ClassName

This declaration specifies an object with a given Type, and its name given by
the identifier Id. The object as well as its components are called variables, and
they can be bound by functional dependencies. (A component b of an object a
has a compound name a.b.) If any is written instead of a type, then type of
the object remains undefined, and it must be determined by some binding in
a specification later, i.e. any is a type variable.

258 P. Grigorenko, E. Tyugu

2. Binding of variables:

Bind ::= V ar = V ar

V ar ::= Id[.V ar] where variables must have the same type or the same super-
type. A binding x = y denotes a possibility to compute a value of a variable (x
or y) in the case a value of another variable is known. A binding x = y is ex-
tended to the respective components of x and y, i.e. if x and y have a component
a then x.a = y.a is introduced.

3. Valuation:

V al ::= V ar = Const where Const is an object of a primitive type.

4. Functional dependency :

FuncDep ::= (SFuncDep|HOFuncDep)′{′Impl′}′

SFuncDep ::= [V arList] → V ar

HOFuncDep ::= Subtask[{,Subtask}][, V arList] → V ar

Subtask ::= ′[′V arList → V arList′]′

V arList ::= V ar[, V ar]

where the statement SFuncDep has one arrow and specifies a functional de-
pendency that represents computing a value of the variable on the right side
(the result) from given values of variables on the left side (arguments). The
statement HOFuncDep has several arrows and specifies a higher-order func-
tional dependency. In this case there are also arguments that have a functional
type. These are the arguments in square brackets. These arguments are called
subtasks. More about subtasks is written in Section 7.

Impl is a name of a program (a Java method in our implementation). This
program is an implementation of the functional dependency specified by this
statement. The type given by a functional dependency must be the type of the
program given by its corresponding implementation, in particular, in the case of
a functional dependency with functional arguments the program must also have
procedural parameters of appropriate types.

5. Inheritance:

Inherit ::= super Name

This statement defines a simple inheritance. If such a statement appears in
a specification of some type, the specification of a type under the Name is
inlined instead of this statement. There can be only one statement of this kind
in a specification. No overriding is permitted.

Bindings, valuations and functional dependencies bind variables and can be used
for computations by means of value propagation, see Section 5. This is the intuitive
semantics of a specification. In order to specify a computation one has to give also
a goal, i.e. specify what should be computed.

Higher-Order Attribute Semantics of Flat Declarative Languages 259

A collection of statements is a specification of a type or it is a specification of
a program, if a goal is given. An example of a specification has been presented
in Section 2 as a specification of reliability of a device. (Note that the decla-
rations of components c1, c2, c3 are written in one statement for brevity there:
Basic c1, c2, c3;).

4 STANDARD EXTENSION OF THE CORE LANGUAGE

There is a standard extension of the core language that can be easily translated in
the latter by presenting new statements of the language as collections of statements
of the core language. Defining a new flat language is defining new types of objects
in the extended core language, where the syntax will remain unchanged otherwise.

The standard extension of the core language includes the following new state-
ments:

1. Alias:

Alias ::= alias [′(′Type′)′] Id =′ (′V arList′)′

Alias defines a new variable with the name Id. This variable is a tuple of variables
listed in the parentheses.

1. Alias with a wildcard:

AliasW ::= alias [′(′Type′)′] Id =′ (′ Wildcard ′)′

Wildcard ::= ∗.Id

Alias with a wildcard is a variable whose list of components depends on the
particular specification where such statement occurs. This list includes all variables
of the components defined in the same specification and names of such variables are
equal to the identifier specified in Wildcard. The order of components in the list is
not predefined, but it remains fixed during the computations. This alias is used for
distributing and collecting some values for all objects defined in a specification.

1. Equation:

Equation ::= AExpr = AExpr

Equation is a shorthand for a set of functional dependencies that can be de-
rived from it. For example, I = U*R; will denote three functional dependencies:
I, U → R{f1}; U,R → I{f2}; I, R → U{f3}; with the corresponding implementa-
tions derivable from the given equation: f1 : R = I/U; f2 : I = U ∗ R; f3 : U = I/R.
We keep open the class of arithmetic expressions that can be used in equations, be-
cause this depends on the power of an equation solver for a particular flat language.
(In our implementation based on Java [3], the equations are solved analytically and
are restricted in such a way that they cannot include occurrences of a variable simul-
taneously on both sides of an equation. Beside arithmetic operations, an equation
may include only functions implemented in java.lang.Math class.)

260 P. Grigorenko, E. Tyugu

5 SIMPLE ATTRIBUTE MODELS AND EVALUATION

OF ATTRIBUTES

In this section we give definitions of attributes, attribute dependencies and attribute
models in a conventional way, not relating them to syntax of a flat language.

Attribute is a typed variable.

Simple attribute dependency is a functional dependency between attributes.

Let us use the following notation for a simple attribute dependency:

x1, . . . , xm → y1, . . . , yn{f},

where f is a function of m arguments x1, . . . , xm computing a value of n-tuple
(y1, . . . , yn), i.e. x1, . . . , xm are inputs and (y1, . . . , yn) are outputs of the attribute
dependency. We say that the inputs and the outputs are bound by the attribute
dependency.

Simple attribute model is a pair 〈A,R〉, where A is a finite set of attributes and
R is a finite set of attribute dependencies binding these attributes.

Let U and V be two sets of attributes of an attribute model M . We denote by
U → V a computational problem on the attribute model M , and say that U is a set
of input attributes (or just inputs) and V is a set of output attributes (or outputs)
of a computational problem. The computational problem states a goal that, given
values of attributes from U , requires to find values of attributes of V using attribute
dependencies of M .

If for two computational problems U1 → V1 and U2 → V2 we have U1 ⊆ U2 and
V2 ⊆ V1, and at least one of these inclusions is strict, then we say that the compu-
tational problem U1 → V1 is greater than the computational problem U2 → V2.

We describe now a method that for a goal in the form of a computational problem
U → V on a simple attribute model decides whether there is a way to compute values
of attributes of V from given values of attributes of U , and in the case of the positive
answer produces an algorithm for computing the values, i.e. produces an algorithm
for solving the computational problem.

Value propagation is a procedure that, for a given attribute model M and a set
of attributes U ⊂ A, decides which attributes are computable from U and produces
a sequence of attribute dependencies. Constructed sequence of attribute dependen-
cies becomes an algorithm for evaluating the attributes that are computable on the
model M .

A well-known simple value propagation algorithm with linear time complexity
(see [19], Section 4.3.2) works step by step as follows. At each step it tries to find
an attribute dependency whose inputs are all known (initially given or computed)
and some of outputs are not computed. In the positive case, the attribute depen-
dency will be added to the algorithm being built and all its outputs will be added
to the set of computed attributes. In the negative case (if there is no such attribute
dependency and not all outputs of the problem have been found), the problem is

Higher-Order Attribute Semantics of Flat Declarative Languages 261

unsolvable. Initially the set of computed attributes equals to the set of given at-
tributes U and the algorithm (i.e., the sequence of attribute dependencies) is empty.

The described method does not give a minimal algorithm for solving a problem
in general – the algorithm may include steps that are unnecessary for solving the
problem. There is a procedure that gives a minimal algorithm for solving a computa-
tional problem, see Section 4.3.4 in [19]. For each attribute dependency included in
the algorithm, this optimization procedure checks, whether the computation of out-
puts of a problem depends on the application of a particular attribute dependency.
If not, an attribute dependency is excluded from the algorithm. The procedure runs
backwards starting from the end of the algorithm. This optimization procedure has
also linear time complexity.

Example 1. Let us consider the following simple attribute model with eight at-
tributes and six attribute dependencies:

〈A = {a, b, c, d, e, f, g, h},

R = {a→ c{f1};

a, e→ h{f2};

b, c→ d{f3};

d→ e{f4};

d, f → g{f5};

h→ f{f6}}〉

It is always possible to present an attribute model in the form of a directed
bipartite graph, where arcs correspond to directed bindings between attributes and
dependencies. Figure 2 shows it for the present example with additional labels
F1, . . . , F6 for attribute dependencies.

��
��

u u u u u u u u

��
��

��
��

��
��

��
��

f1 f3 f5f4f2

O � 7 �

R

a b c d e f g h

>�k �

q�? ?

��
��

6

	

f6

F1 F2 F3 F4 F5 F6

Fig. 2. Bipartite graph of a simple attribute model

Let us try to solve a computational problem U : {a, b, f} → V : {g} on a given
attribute model. Value propagation procedure does not consider concrete values of
attributes from the input set U , it just assumes that attributes are computable. For
each attribute dependency value propagation stores a counter indicating the number

262 P. Grigorenko, E. Tyugu

of unknown inputs. If an attribute is or becomes computable, counter is decreased
for each dependency where such attribute is an input attribute. If for an attribute
dependency a counter is zero, such dependency is added to the algorithm and its
output attributes become computable. One of the outcomes of the value propagation
in this example is a sequence {F1, F3, F4, F2, F5, F6}. It is clear that this algorithm is
not minimal, i.e. some attribute dependencies used are not required for computing
the output g. Once the optimization procedure is applied, the algorithm is reduced
to {F1, F3, F5}.

6 ATTRIBUTE SEMANTICS OF CORE LANGUAGE

Semantics of a specification in the core language is a set of all algorithms that can
be composed on the attribute model of the specification for solving computational
problems. In order to give attribute semantics of the core language, we have to

• define rules for translation of specifications into attribute models

• give a method for constructing an algorithm for any goal that describes a problem
solvable on an attribute model.

An attribute model M of a specification is built stepwise in the following way.
First, an empty model M is created. Thereafter, statements of the specification

are translated and the translations added to M one by one as follows.

1. A declaration T x is translated into a new attribute x in the attribute model of
the specification. If T is a class with a type (a1 : s1, . . . , ak : sk), then attributes
x.a1, . . . , x.ak are added to the model M . Attribute dependencies binding the
attributes according to the semantics of T are added to M . Processing of a dec-
laration with the type variable any is postponed until the type will be known
and then translated as described here.

2. A binding x=y is translated into new attribute dependencies x → y{id}, y →
x{id}, as well as x.z → y.z{id}, y.z → x.z{id} for each z that is a component
of both types of x and y. (The implementation id must be of a suitable type for
each attribute dependency!)

3. A valuation x=v is translated into an attribute dependency → x{f}, where
f denotes an assignment of v to x.

4. A functional dependency is added as a new attribute dependency to the attribute
model M .

5. An inheritance super x is translated by finding the attribute model of x and
adding all its variables and all its attribute dependencies to the model M . Any
name clash is considered as a mistake.

A method of constructing an algorithm for solving a given goal has been de-
scribed in the previous section for simple attribute models. This gives us the at-
tribute semantics of the core language without higher-order attribute dependencies.

Higher-Order Attribute Semantics of Flat Declarative Languages 263

In the following sections we extend attribute models with higher-order attribute
dependencies and describe a method of attribute evaluation in the general case.

7 HIGHER-ORDER ATTRIBUTE MODELS

Let us return to the example of reliability calculation again. Instead of calculating
one reliability value, we may wish to calculate a table of reliabilities of a device
depending on the given reliabilities of a component. In the presented example, one
may wish to run the program for the goal c3.p -> pr.p several times, for instance,
beginning from 0.80 with a step 0.05 to 0.99. This cannot be specified in the core
language with attribute models introduced above, but can be specified in the core
language using a higher-order functional dependency. Indeed, let us have a program
tab for tabulating a function that takes as input from, step, to, and produces
a table with two columns – one for values of the argument and another for the
respective values of the function. This can be represented in the core language by
a higher-order functional dependency:

[funArg -> funVal], from, step, to -> table{tab};

The specifier of this functional dependency says exactly that having a program
of computing one value of the function (funVal) from a given value of its argument
(funArg), and having values of from, step, to, one can compute table by using the
program tab. Let us notice that it is not expected that the program of computing
funVal from funArg is given in a ready form. This program must be constructed on
the basis of the specification that includes the higher-order functional dependency.
However, the tabulation program tabmust be preprogrammed. Our implementation
of tab as Java method is presented in Section 10.2. This program is useful in many
cases, and it can be used in a type Table that has the following specification:

double funArg, funVal, from, step, to;

String table;

[funArg -> funVal], from, step, to -> table{tab};

A specification of the whole problem will include, besides the specification given
in Section 2, also the following lines now:

Table t;

t.funArg=c3.p;

t.funVal=pr.p;

t.from=0.80;

t.step=0.05;

t.to=0.99;

And the goal will be ->t.table;

The type Table is in essence a control structure that prescribes performing
computations in a particular way. One can introduce even more general control
structures in a similar way, e.g. a for- or a while-loop and an if-then-else choice,

264 P. Grigorenko, E. Tyugu

for instance. This will add the generality to attribute models. For example, a speci-
fication of a while-loop type with a preprogrammed loop control whileProgram can
be

boolean binit, b;

any state, nextstate, initstate;

[state -> nextstate, b], binit, initstate -> state{whileProgram};

The subformula [state -> nextstate, b] prescribes the synthesis of a body
S of a loop and computing of a loop control variable b. The whole program will be
equivalent to while b do S od;

Here we have quite informally presented two examples of higher-order functional
dependencies, and now we are going to define them precisely. Let A be a set of
attributes and P a set of computational problems with inputs and outputs from A.

Higher-order attribute dependency (hoad) is a functional dependency that has
inputs from A ∪ P and outputs from A. Inputs from P are subtasks.

Higher-order attribute model is a pair 〈A,R〉 where A is a set of attributes
and R is a set of attribute dependencies that includes some higher-order attribute
dependencies on the set of attributes A.

This extension makes a big difference in the following: higher-order attribute
models are so expressive that enable to synthesize recursive, branching and cyclic
programs where respective control structures, i.e. recursion, branching and loops
are preprogrammed and represented as higher-order attribute dependencies (cf. the
example in the beginning of this section). Detecting the solvability of a problem
and synthesizing an algorithm on a higher-order attribute model has exponential
time complexity with respect to the number of higher-order dependencies (see the
remark in Section 8).

8 EVALUATION OF HIGHER-ORDER ATTRIBUTES

Often only one higher-order attribute dependency is used in a specification. The
evaluation strategy is quite obvious in this case: first use only conventional attribute
dependencies and at the end the higher-order one. Thereafter, if still needed, use
simple attribute dependencies again. Time complexity of the search remains linear
in this case with respect to the size of an attribute model.

In the general case, when an attribute model M contains several higher-order
attribute dependencies, the strategy for construction an evaluation algorithm is as
follows.

First the procedure of simple value propagation is done using only attribute
dependencies that are not higher-order. If this does not solve the problem (does not
give values of all outputs of the problem), then a hoad is applied, if it is applicable.
A hoad is applicable if and only if all its inputs are given and all its subtasks are
solvable and it computes values of some attributes that have not been evaluated
yet. A sequence of applicable attribute dependencies obtained in this way is called

Higher-Order Attribute Semantics of Flat Declarative Languages 265

maximal linear branch (mlb). It contains one hoad at the end of the sequence.
There are three possible outcomes of this procedure:

1. After constructing the mlb the problem is solvable (like in the case of a single
hoad).

2. A mlb cannot be found and the problem is unsolvable.

3. A mlb can be found and the initial problem U1 → V1 is reduced to a smaller
one U2 → V2, U2 = U1 ∪ Y and V2 = V1\Y , where Y is the set of outputs of the
hoad.

This procedure (construction of mlb) is repeatedly applied until the problem is
solved or no more mlbs can be constructed.

It is important to notice that for applying a hoad we have to solve all its subtasks.
This means that the whole procedure of problem solving must be applied for every

subtask. This requires a search on an and-or tree of problems (subtasks) on the
attribute model. The root of a tree corresponds to the initial problem, and it is an
or-node, because there may be several possible mlbs for this problem. And-nodes
correspond to higher-order attribute dependencies and have one successor for its
each subtask, plus one successor for the reduced task that has to be solved after
applying the mlb. Or-nodes of the tree correspond to the subtasks that have to be
solved for their parent and-node.

Let us abbreviate S for a subtask [u1, . . . , um → v1, . . . , vn]. Then a hoad has
the form:

S1, . . . , Sr, x1, . . . , xk → y1, . . . , yl{f},

where xs, yt ∈ A are attributes and Sj ∈ P are subtasks. Let us label hoads with
Ri, i = 1, . . . imax, where imax is the number of all hoads in the model.

Figure 3 shows a part of an and-or search tree for solving a problem S0 on
a higher-order attribute model. The and-nodes are the hoads Rα, . . . , Rβ that can
be applied first for solving a problem of their parent node. The successors of a hoad

node Rα are its subtasks Sα,1, . . . , Sα,m and the reduced problem S
′

α that remains
to solve after applying the hoad. The search on the and-or tree is depth-first search
with backtracking.

S0

Rα
... Rβ

Sα,1 Sα,m Sβ,1 Sβ,n... ...

Rγ Rζ...

... ...

S
′

α
S

′

β

Fig. 3. And-or search tree for attribute evaluation on higher-order attribute model

266 P. Grigorenko, E. Tyugu

Remark. It is useful to notice that types of attribute dependencies (and higher-
order attribute dependencies) can be considered as propositional formulas where
arrows denote implications and commas denote conjunctions. Building an attribute
evaluation algorithm for a particular computational problem with inputs u1, . . . , um

and outputs v1, . . . , vn corresponds then to a derivation of the formula u1∧. . .∧um ⊃
v1 ∧ . . . ∧ vn in the intuitionistic propositional calculus (IPC). This correspondence
is known as the Curry-Howard isomorphism [5].

We would like to point out here that the evaluation of attributes considered in
the present section is an efficient algorithm of program construction in propositional
logic programming [10]. This approach gives also an algorithm of proof search for
IPC, although some transformation of propositional formulas to the suitable form
will be needed in the general case [8]. An unpleasant consequence of the fact that the
proof search for IPC is PSPACE-complete [15], the higher-order attribute evaluation
also has exponential time complexity.

Example 2. In this example we will show the problem solving on higher-order
attribute models. Let us consider an attribute model with the following attribute
dependencies:

[y → a]→ b

[a→ b]→ x

x, y → a

and a goal in the form of a computational problem with no inputs and one output
{→ b} on this model. In fact, solutions (there can be more than one) of this
problem are equivalent to the derivation of a well-known Kripke’s formula ((((A→
B)→ A)→ A)→ B) → B which is an intuitionistic analog of the classically valid
formula ((A → B) → A) → A known as the Peirce’s law. The idea of encoding
arbitrary intuitionistic propositional formulae into sets of formulas with at most one
subimplication on the left hand side of a outermost implication is described in [8].

For brevity, in this example we omit implementations of attribute dependencies
and label dependencies as follows: S1 : [y → a]; S2 : [a → b]; R1 : S1 → b;
R2 : S2 → x; F1 : x, y → a, where Si is a subtask, Rj is a higher-order attribute
dependency and Fk is a simple attribute dependency.

Figure 4 shows a complete and-or search tree for a solution of the computational
problem. Let us explain the traversal step by step. The root of a tree S0 is a top-level
problem with a goal ∅ → b with an empty set of inputs. First, value propagation
is applied on S0 returning an empty sequence of attribute dependencies, because
the initial problem has no inputs. In order to find an mlb, a higher-order attribute
dependency has to be considered. Thus R1 is picked (first hoad in the model). The
only input of R1 is a subtask S1 that has to be solved. S1 has one input y and
one output a. Again, value propagation is applied in the context of S1 returning
an empty sequence. In order to complete an mlb of S1, a hoad has to be used again.

Higher-Order Attribute Semantics of Flat Declarative Languages 267

S0

R1

S1

R2

S2

R2

S2

R1

S1

S
′

0

R1

S1

∅ → b

∅

?

y → a

y

y, a → b

+

a → b

∅
~

a, y → a

b

6?
a

x
j

x → b

?
x

x, y → a

b

6

b

b

Y

k

{}

{R1({})}

{F1}

{R1({F1})}

{R2({R1({})});R1({F1})}

Fig. 4. Decorated and-or search tree of the example

R1 is ignored, because it has just been tried, thus R2 is picked. Subtask S2 of R2

has an input a and an output b. In addition, y from S1 is also available. S2 cannot
be solved, because value propagation returns an empty sequence (cannot compute
anything from y and a) and there are no other hoads that can be used; consequently,
mlb of S2 cannot be constructed. We do backtracking to the node S1 and then to
the S0 and mark the backtracked branch by dashed lines.

Back in S0, second hoad R2 is chosen. S2 cannot be solved by value propagation,
thus R1 is used. S1 is solved trivially (i.e. mlb of S1 is empty), because an input
a from S2 maps to the output a of S1. Mlb of S2 is successfully constructed and
its sequence contains one attribute dependency R1. The output of R1 is b and it is
exactly what is needed to solve S2. The subtask of R2 is solved and an output x of
R2 becomes available. Here is a tricky part. First mlb of S0 is complete with the
following sequence of attribute dependencies: {R2({R1({})})}. Initial problem S0 :
∅ → b is not solved. Knowing x, S0 is reduced (narrowed) to a new computational
problem S

′

0
: x→ b. Again, value propagation is applied on S

′

0
returning an empty

sequence. Then, R1 is picked. In the context of S1, x and y are known. The former
is propagated from S

′

0
and the latter is an input of S1. The required output is a.

Value propagation returns a sequence with one simple attribute dependency {F1},
i.e. a becomes known after using F1 with inputs x and y. The subtask S1 is solved.
The output of R1 is b. After using R1, the problem S

′

0
is solved, consequently S0 is

solved. Finally, mlb of S
′

0
is glued together with mlb of S0 and the full algorithm of

computing the goal b is as follows: {R2({R1({})});R1({F1})}.

9 IMPLEMENTATION

Our approach to attribute semantics of specifications has been implemented in a Java
based tool CoCoViLa2 [3]. This tool is used for the development and usage of
domain-specific flat languages. In CoCoViLa, a specification in a flat language is
presented visually as a scheme (e.g. Figure 5). A scheme language is a flat language

2 Homepage: http://www.cs.ioc.ee/cocovila.

268 P. Grigorenko, E. Tyugu

Fig. 5. CoCoViLa Scheme Editor and a specification window

where visual objects are bound by lines connecting ports that represent attributes
of the objects. The scheme language is translated into the extended core language.
Due to hierarchical specification of schemes, CoCoViLa is able to handle schemes
with a large number of objects (including thousands of variables) and many sub-
tasks.

Java classes annotated with specifications in a flat language are called meta-

classes. A visual language is implemented as a package that is a set of components
called visual classes which are metaclasses supplied with corresponding visual im-
ages. Attribute semantics of visual specifications (schemes) is implemented in such
a way that an executable code for attribute evaluation is produced first and then
the code is evaluated.

CoCoViLa consists of two runnables: the Class Editor and the Scheme Editor.

The Class Editor is used for implementing visual languages for different problem
domains. This is done by defining attribute models of language components as well
as their visual and interactive aspects.

The Scheme Editor is a tool for drawing schemes, compiling and running pro-
grams defined by a scheme and a goal. Algorithms for attribute evaluation are
embedded into the Scheme Editor and not visible to the user. Figure 5 shows
the Scheme Editor used for solving the problem of Reliability presented in Sec-
tion 2.

CoCoViLa has been used for implementing a number of simulation packages for
neural networks, electrical and logical circuits, analysis of mechanical drives, etc.
Also, it has been used for educational purposes at Tallinn University of Technology.

Higher-Order Attribute Semantics of Flat Declarative Languages 269

10 EXAMPLES

We present first the implementations of two small examples in CoCoViLa that we
have introduced in Section 2 and Section 7. This should explain how CoCoViLa
works and how it uses the attribute semantics. The third example is a larger simu-
lation package.

As it has already been mentioned in the previous section, the specification of
components and problems in CoCoViLa are metaclasses (here we do not consider
the visual representation) – Java classes annotated with specifications of attribute
models. In a metaclass the specification is surrounded by the comment symbols /*@
and @*/ so that only CoCoViLa uses this information and the Java compiler ignores
it.

The following three metaclasses: Basic, Parallel and Series constitute a sim-
ple Reliability package in CoCoViLa.

1 class Basic {

2 /*@ specification Basic {

3 double p, q;

4 p + q = 1;

5 } @*/

6 }

1 class Parallel extends Basic {

2 /*@ specification Parallel super Basic {

3 Basic part1 , part2;

4 q = part1.q * part2.q;

5 } @*/

6 }

1 class Series extends Basic {

2 /*@ specification Series super Basic {

3 Basic part1 , part2;

4 p=part1.p*part2.p;

5 } @*/

6 }

10.1 Simple Attribute Model

The description of a problem presented in Section 2 in CoCoViLa is the metaclass
Reliability which is either written by the user or automatically generated by
CoCoViLa from the visual scheme shown in Figure 1. (In the latter case the package
has to contain visual classes as well.)

1 public class Reliability {

2 /*@ specification Reliability {

3 Basic c1;

270 P. Grigorenko, E. Tyugu

4 c1.p = 0.99;

5 Basic c2;

6 c2.p = 0.97;

7 Parallel pr;

8 Series sr;

9 Basic c3;

10 sr.part1 = c1;

11 sr.part2 = c2;

12 pr.part1 = sr;

13 pr.part2 = c3;

14 c3.p -> pr.p;

15 } @*/

16 }

Line 14 in the specification of the Reliability states the goal – compute pr.p
assuming that the value of c3.p is known.

CoCoViLa handles the given specification, parses and transforms it into the
attribute model, invokes the value propagation on the model and produces the exe-
cutable Java program that is the attribute evaluation algorithm:

1 public class Reliability implements IComputable {

2 public Basic c1 = new Basic();

3 public Basic c2 = new Basic();

4 public Parallel pr = new Parallel();

5 public Series sr = new Series();

6 public Basic c3 = new Basic();

7
8 public void compute(Object... args) {

9 c3.p = ((Double)args [0]). doubleValue ();

10 c1.p= 0.99;

11 c2.p= 0.97;

12 sr.part1.p = c1.p;

13 sr.part2.p = c2.p;

14 c3.q=(1-c3.p);

15 sr.p= (sr.part1.p * sr.part2.p);

16 pr.part2.q = c3.q;

17 sr.q=(1-sr.p);

18 pr.part1.q = sr.q;

19 pr.q= (pr.part1.q * pr.part2.q);

20 pr.p= 1-pr.q;

21 }

22 }

The generated Java program is an ordinary Java class where the specification
has been replaced by variable declarations and a method containing the attribute
evaluation algorithm. The Reliability class implements the IComputable interface
from the CoCoViLa API which contains a single method compute():

Higher-Order Attribute Semantics of Flat Declarative Languages 271

public interface IComputable {

public void compute(Object... args);

}

After invoking the compute() method and giving the value c3.p = 0.85 (the sys-
tem displays a corresponding dialog box), the following list of computed attributes
is returned:

c1.p = 0.99

c2.p = 0.97

c3.p = 0.85

c3.q = 0.15

sr.p = 0.9603

sr.part1.p = 0.99

sr.part2.p = 0.97

sr.q = 0.0397

pr.part1.q = 0.0397

pr.part2.q = 0.15

pr.q = 0.005955

pr.p = 0.994045

The last line contains the desired result.
Only the specifications (visual or textual) and results are visible to the user

in a usual case. The other steps will be invisible, unless one explicitly requests
CoCoViLa to show them. The textual specification of a problem can be obtained
from a visual representation, for example from the scheme in Figure 1 or written
manually.

10.2 Higher-Order Attribute Model

In this section we demonstrate the usage of a higher-order attribute model in
CoCoViLa.

We introduce a metaclass Table, whose specification has been presented in Sec-
tion 7. Table consists not only of a specification of its attribute model, but also
contains a method tab() with four arguments. Line 5 in Table includes a higher-
order attribute dependency which can be read as follows – “synthesize an algorithm
for computing the value of the attribute funVal from funArg and use it to compute
the value of the attribute table from the attributes from, step and to”. [funArg
-> funVal] is a subtask. There can be more than one subtask in a higher-order
attribute dependency and all of the subtasks have to be solved to make such de-
pendency applicable. An algorithm for solving a subtask may require the usage of
other higher-order attribute dependencies as we have shown in Section 8.

1 public class Table {

2 /*@ specification Table {

3 double funArg , funVal , from , step , to;

4 String table;

272 P. Grigorenko, E. Tyugu

5 [funArg -> funVal], from , step , to -> table{tab};

6 } @*/

7
8 public String tab(Subtask st,

9 double from , double step , double to) {

10 String result = "\n";

11 try {

12 for (double i = from; i <= to; i += step) {

13 Object[] out = st.run(new Object[] { i });

14 result = result + "i=" + i

15 + ", out=" + out[0] + "\n";

16 }

17
18 } catch (Exception e) {

19 e.printStackTrace ();

20 }

21 return result;

22 }

23 }

Let us have a look at the realization of the higher-order attribute dependency.
The identifier tab in curly brackets shows that there is a Java method with this
name in the same metaclass that implements the given dependency. Arguments of
the method tab() correspond to the inputs of the attribute dependency. The first
input of the dependency is a subtask, i.e. one has to pass to the method tab() the
algorithm for solving the subtask. Java does not support pointers to functions, so
another approach had to be taken – the first parameter of the method tab() is an
object st of type Subtask, where Subtask is the interface from CoCoViLa’s API
with one method run() that must solve the given subtask:

public interface Subtask {

public Object[] run(Object[] in) throws Exception;

}

Other three inputs of the higher-order attribute dependency in Table are ordi-
nary variables of primitive type double represented by the respective parameters
of the method tab() (the names of the inputs of a dependency in a specification
and the names of the respective parameters of its method do not have to be the
same). The body of the method tab() contains a for-loop which iterates a local
variable i beginning with the value defined by the variable from with the increment
step until to. The value of i is passed as a single argument to the method run()

of object st (see Line 13). The method run() returns a value that is used for con-
structing a string result that is the expected table. The method tab() returns the
result.

Now we have to extend the specification of our reliability problem. The extended
specification of Reliability is the following:

Higher-Order Attribute Semantics of Flat Declarative Languages 273

1 public class Reliability {

2 /*@ specification Reliability {

3 ...here are the lines 3-13

4 of the metaclass Reliability from Section 10.1

5 Table t;

6 t.funArg=c3.p;

7 t.funVal=pr.p;

8 t.from =0.80;

9 t.step =0.05;

10 t.to =0.99;

11 -> t.table;

12 } @*/

13 }

The variable t.funArg is bound by an equality with c3.p and t.funVal is
bound with pr.p. This means that it is possible to solve the subtask [funArg ->

funVal] if it is possible to compute pr.p from c3.p. In Section 10.1 we have shown
that c3.p->pr.p is solvable. In the current specification the goal is to compute the
value of the variable t.table (Line 10).

The program synthesized from the given specification is shown below. The first
ten lines of the body of the compute() method are value assignments and some
computations that do not depend on the value of c3.p. Then there is a nested class
Subtask 0 which implements the Subtask interface. The body of the run() method
of the class Subtask 0 is the algorithm for computing t.funVal from t.funArg

which is given as an input of this subtask. An instance subtask 0 of Subtask 0

class is created and passed as the first argument of the tab() method of the class
Table. Note that inside run() some values computed outside of the Subtask 0 are
used (in order not to change the environment outside the subtask, copies of the
respective variables are made inside the Subtask 0).

1 public class Reliability implements IComputable {

2
3 // ...(omitted variable declarations for c1 ,c3 ,c3 ,sr,pr,t)

4
5 public void compute(Object... args) {

6 c1.p = 0.99;

7 c2.p = 0.97;

8 sr.part1.p = c1.p;

9 sr.part2.p = c2.p;

10 sr.p = (sr.part1.p * sr.part2.p);

11 sr.q = (1 - sr.p);

12 pr.part1.q = sr.q;

13 t.from = 0.80;

14 t.step = 0.05;

15 t.to = 0.99;

16
17 class Subtask_0 implements Subtask {

274 P. Grigorenko, E. Tyugu

18 //...(omitted the constructor

19 // and new declarations for c3 ,pr,t)

20 public Object[] run(Object[] in)

21 throws Exception {

22 t.funArg = ((Double)in [0]).doubleValue ();

23 c3.p = t.funArg;

24 c3.q = (1 - c3.p);

25 pr.part2.q = c3.q;

26 pr.q = (pr.part1.q * pr.part2.q);

27 pr.p = 1 - pr.q;

28 t.funVal = pr.p;

29 return new Object[] { t.funVal };

30 }

31 }

32 Subtask_0 subtask_0 = new Subtask_0 ();

33 t.table = t.tab(subtask_0, t.from , t.step , t.to);

34 }

35 }

Invoking the compute() method returns the desired result (value of t.table):

t.table =

i=0.80 , out =0.992060

i=0.85 , out =0.994045

i=0.90 , out =0.996030

i=0.95 , out =0.998015

10.3 Large-Scale Simulation

Figure 6 shows the usage of one of the largest applications of CoCoViLa – a package
for modeling and simulation of hydraulic-mechanical load-sensing systems [2]. In
principle, this package and its operation is similar to the example in Section 10.2.
The only difference is in the complexity of an attribute model and Java classes.
However, the role of higher-order attribute dependencies is more important in solving
complex problems like the hydraulics problem here.

As it has been noted in the beginning of the paper, declarative flat languages
have a weak syntactic structure, in particular, the structure of a specification does
not represent the structure of a synthesized program. Simple attribute models (and
conventional attribute models of syntactic rules) enable to construct only linear
branches of programs. From the other side, a program for solving the simulation
problem in Figure 6 must have a complex structure – nested loops, etc. The re-
quired control structures of a synthesized program are provided by the higher order
attribute dependencies. Their subtasks specify newly synthesized blocks that are
run as prescribed in a higher-order attribute dependency. (See the usage of a sub-
task in a loop in the example in Section 10.2). Let us note that any iterative method
using one loop, including Runge-Kutta that is needed in the present case, can be

Higher-Order Attribute Semantics of Flat Declarative Languages 275

Fig. 6. A scheme with hydraulic-mechanical load-sensing system and the result of simula-
tion

implemented in CoCoViLa using a subtask in the same way as in the class Table
in Section 10.2 (note that it would be impossible to implement a looping algorithm
without a subtask). For the present hydraulics problem, the synthesized Java pro-
gram has almost 5k lines of code, includes loops with nestedness 4, and includes
other control structures also implemented with subtasks.

Modeling and simulation of hydraulic systems (e.g. automatically regulated fluid
power systems of stationary and mobile machines, steering mechanisms of cars and
ships, drives of robots, etc.) has been investigated in Tallinn University of Tech-
nology for several decades. About 40 hydraulic elements (hydraulic motor, pump,
resistors, volume elasticities, tubes, interface elements, etc.) from older packages for
modeling and simulating hydraulic systems have been implemented in CoCoViLa.
Some of the elements are shown in the scrollable toolbar in Figure 6. The developed
package includes also visual classes for drawing charts and a simulation engine based

276 P. Grigorenko, E. Tyugu

on iterative methods (e.g. Runge-Kutta) for solving ordinary differential equations.
This package enables one to hierarchically construct mathematical models of large
and complicated hydraulic systems that include thousands of variables, equations
and functions. The tool checks the solvability of a task given by a goal, automatically
generates problem solving algorithm and the corresponding Java program.

Steady state conditions and dynamic behavior of the hydraulic load-sensing
system are simulated using the package described in this section. Figure 6 shows an
example of simulation of steady-state conditions. The window in the background is
the Scheme Editor with a scheme that represents the multi-pole model of a hydraulic-
mechanical load-sensing system. The second window contains the corresponding
textual specification of the model. The unfolded model of this problem includes
1 988 variables and 4 532 attribute dependencies. The generated simulation program
is a Java class that has 4 958 lines of Java code. It is the attribute evaluation program
for the particular problem. Attribute evaluation planning and code generation for
this example takes about 2 seconds on a typical 2.0GHz laptop. The window in
the foreground in Figure 6 contains the result of this simulation – a 3D chart with
calculated 1 000× 1 000 points. It shows the efficiency coefficient of the load sensing
system depending on the displacement of the directional valve and the load moment
of the hydraulic motor.

11 RELATED WORK

The concept of a flat language has been used in several theoretical works [1, 6]. In
principle, Albert et al. [1] use the flattening of a language for the same purpose as
we do – for expressing operational semantics in a precise way. Their work is done
on a rather abstract level in the context of semantics of functional programs, aiming
to express aspects of modern multi-paradigm languages like laziness, sharing, non-
determinism, equational constraints and external functions. In contrast, our work
is oriented at the traditional representation of semantics in the context of practical
application of automatic program synthesis.

Higher-order attribute grammars have been theoretically considered by Vogt
et al. [20]. They have defined a class of ordered higher-order attribute grammars
(HAGs) as an extension of classical attribute grammars in the sense that parts of
the parse tree can be stored in an attribute, and a parse tree itself can be changed
by attribute evaluation. The strict separation between attributes and parse trees
is removed in HAGs. This adds considerable flexibility to the grammar. Vogt
shows that pure HAGs have expressive power equivalent to Turing machines. The
incremental attribute evaluation algorithm for HAGs is introduced that handles the
higher-order case. We could not find any practical application of this approach. The
reason is probably the unstructured character of HAGs and, as a consequence, the
difficulty of implementation.

The NUT system [17] developed at Institute of Cybernetics in Tallinn and Royal
Institute of Technology in Stockholm is a programming tool of a PRIZ family [9]

Higher-Order Attribute Semantics of Flat Declarative Languages 277

supporting declarative programming in a high-level language, automatic program
synthesis and visual specification of problems by means of schemes. NUT restricts
its attention to constructing programs from pre-programmed modules, rather than
from primitive instructions of an imperative programming language. The specifi-
cation language of NUT is an object-oriented language extended with features for
program synthesis, the pre-programmed modules are methods of classes supplied
with specifications. For automatic program construction, NUT uses rules of the
structural synthesis of programs (SSP) [8], which is based on intuitionistic proposi-

tional logic [10]. For SSP, a specification of a problem is translated into the theory of
intuitionistic propositional logic and the program is extracted from the constructive
proof of that theory. CoCoViLa can be named a successor to NUT, being devel-
oped in the same institute, it includes most of the visual features of NUT and the
attribute evaluation method is based on the ideas of SSP.

The relation between attribute evaluation and structural synthesis of programs
has been also known earlier. In particular, Penjam [12] shows how attribute seman-
tics of programming languages can be presented by means of computational models.
Computational models are used for knowledge representation and problem solving
using the method of structural synthesis of programs. He proves the semantic equiv-
alence between attribute and computational models both being two approaches to
program and compiler specification and implementation. We have continued the
same line of research and introduced the higher-order attribute semantics of flat
languages.

Attribute models with functional dependencies can be treated as functional con-
straint networks [18]. An attempt has been made in the NUT system to support
constraint programming [13]. This has been achieved by using classes as a source of
information for constraint satisfaction and by introducing compute messages, which
are requests for automatic program construction and execution.

A good example of merging constraint programming with object-oriented pro-
gramming is a multiparadigm programming language Oz and its primary open source
implementation – Mozart [11]. However, a kind of the constraint programming in-
corporated in the NUT and CoCoViLa systems is different from the approach taken
in Mozart/Oz. In the former systems constraint solving is carried out by the pro-
gram synthesis. In other words, in CoCoViLa and NUT a static specification of
a constraint satisfaction problem is given and then an executable code is generated
if a problem is solved. CoCoViLa searches solutions of a problem on an attribute
model using value propagation and higher-order attribute evaluation.

Mozart/Oz solve constraint-based problems dynamically, at runtime. User may
interact and add new data to the specification that will be immediately propagated.
Solutions of a problem are determined using the techniques of constraint propagation
and constraint distribution.

There are several tools similar to CoCoViLa intended for visual specification of
domain-specific problems. During the development of CoCoViLa, we have tried to
take into account their features that make them user-friendly, first of all, for visual
editing. One of the good representatives domain-specific modeling environments is

278 P. Grigorenko, E. Tyugu

MetaEdit+ – a mature commercial CASE framework for rapid development and us-
age of domain-specific visual languages [16]. Both in CoCoViLa and in MetaEdit+
a domain-specific language first has to be designed and implemented by a domain
expert. Then the language can be used by a user without a need to do any pro-
gramming, problems are stated visually. The difference is in the semantics of visual
specifications and the code generation. In MetaEdit+, code generators have to
be defined on a metamodel using a built-in scripting language, which in a rather
straightforward way transform models into some external language. CoCoViLa uses
its precise semantics defined through higher-order attributes and automatically syn-
thesizes a program from a declarative specification of a problem and a given goal.
In other words, CoCoViLa is able to construct different programs on a single model
depending on a particular goal. We have briefly discussed a semantics of visual
languages already in a conference paper [4].

12 CONCLUSIONS

We have introduced a method of representing the semantics of a class of declarative
languages that we call flat languages using higher-order attribute models. Meth-
ods of dynamic attribute evaluation on simple attribute models and on higher-order
attribute models have been described. The methods are complete in the sense
that they either produce an attribute evaluation algorithm for a given goal or show
that the goal is unsatisfiable. It is important to understand how the complex-
ity of attribute evaluation depends on the expressiveness of an attribute model. It
varies from linear time complexity to the complexity of PSPACE-complete problems.
Luckily enough, most of practical specifications require few higher-order dependen-
cies, therefore the planning time remains in the limits of seconds.

The implementation of computations of higher-order attributes in Java, in par-
ticular the automatic generation of Java code is not a trivial task. Therefore we
have included complete examples of some metaclasses and generated classes. These
examples should also convince the reader that there are no restrictions on writing
metaclasses in Java except the requirements of the correct usage of the interface
Subtask.

The problem of consistency of higher-order attribute models has not been dis-
cussed here, but it is known that this problem is of high complexity in general, and
can be solved only in some trivial cases. The experience of using the programming
environment CoCoViLa during two years where the higher-order attribute seman-
tics has been implemented has shown us that higher-order attribute semantics is
a practically useful instrument for implementing domain specific languages.

Acknowledgments

This research was partially supported by the Estonian Science Foundation grant
No. 6886 and the target-financed theme No. 0322709s06 of the Estonian Ministry of
Education and Research.

Higher-Order Attribute Semantics of Flat Declarative Languages 279

We would like to express appreciation to the reviewers of this paper for giving
substantial suggestions for making improvements to this work.

REFERENCES

[1] Albert, E.—Hanus, M.—Huch, F.—Oliver, J.—Vidal, G.: Operational Se-
mantics for Declarative Multi-Paradigm Languages. In J. Symb. Comput., Vol. 40,
2005, No. 1, pp. 795–829.

[2] Grossschmidt, G.—Harf, M.: Multi-Pole Modelling and Simulation of a Hy-
draulic Mechanical Load-Sensing System Using the Cocovila Programming Environ-
ment. In: Proceedings of 6th International Fluid Power Conference “Fluid Power
in Motio”, Dresden: 6th International Fluid Power Conference (6. IFK), April 1–2,
2008 in Dresden, conference proceedings. Dresden: Dresdner Verein zur Frderung der

Fluidtechnik e.V., 553–568, 2008.

[3] Grigorenko, P.—Saabas, A.—Tyugu, E.: Cocovila-Compiler–Compiler for Vi-
sual Languages. Electr. Notes Theor. Comput. Sci., Vol. 141, 2005, No. 4, pp. 137–142.

[4] Grigorenko, P.—Tyugu, E:. Deep Semantics of Visual Languages. In: E. Tyugu,
T. Yamaguchi (Eds.): Knowledge-Based Software Engineering. Frontiers in Artificial
Intelligence and Applications, Vol. 140, IOS Pres, 2006, pp. 83–95.

[5] Howard, W.A.: The Formulas-As-Types Notion of Construction. In J. P. Seldin
and J. R. Hindley (Eds.): To H.B. Curry: Essays on Combinatory Logic, Lambda
Calculus, and Formalism, pp. 479–490. Academic Press, New York, 1980. Reprint of
1969 article.

[6] Klunder, B.: Star-Connected Flat Languages and Automata. In: Fundam. Inf.,
Vol. 72, 2006, 1–3, pp. 235–243, Amsterdam, The Netherlands.

[7] Knuth, D.: Semantics of Context-Free Grammars. Mathematical Systems Theory,
Vol. 2, 1968, pp. 127–145.

[8] Matskin, M.—Tyugu, E.: Strategies of Structural Synthesis of Programs and Its
Extensions. Computing and Informatics, Vol. 20, 2001, pp. 1–25.

[9] Mints, G.—Tyugu, E.: The programming system PRIZ. J. Symb. Comput., Vol. 5,
1988, No. 3, pp. 359–375.

[10] Mints, G.—Tyugu, E.: Propositional Logic Programming and PRIZ System. J.
Log. Program., Vol. 9, 1990, Nos. 2–3, pp. 179–193.

[11] The Mozart Programming System. http://www.mozart-oz.org.

[12] Penjam, J.: Computational and Attribute Models of Formal Languages. Theoretical
Computer Science 1990.

[13] Penjam, J.—Tyugu, E.: Constraints in NUT. In: Mayoh, Brian; Tyugu, Enn;
Penjam, Jaan (Eds.): Constraint programming: Berlin: Springer, (NATO ASI series.
Series F, Computer and Systems Sciences), pp. 330–349, 1994.

[14] Pierce, B.C.: Types and Programming Languages. MIT Press 2002.

[15] Statman, R.: Intuitionistic Propositional Logic Is Polynomial-Space Complete. The-
oretical Computer Science, Vol. 9, 1979, pp. 67–72.

280 P. Grigorenko, E. Tyugu

[16] Tolvanen, J.-P.—Rossi, M.: Metaedit+: Defining and Using Domain-Specific

Modeling Languages and Code Generators. In OOPSLA ’03: Companion of
the 18th annual ACM SIGPLAN conference on object-oriented programming, sys-
tems, languages, and applications, pp. 92–93, New York, NY, USA, 2003.

[17] Tyugu, E.—Matskin, M.—Penjam, J.—Eomois, P.: NUT – An Object-
Oriented Language. Computers and Artificial Intelligence, Vol. 5, 1986, No. 6,
pp. 521–542.

[18] Tyugu, E.—Uustalu, T.: Higher-Order Functional Constraint Networks. In:
Mayoh, Brian; Tyugu, Enn; Penjam, Jaan (Eds.): Constraint programming:
Springer 1994 (NATO ASI series. Series F, Computer and Systems Sciences), Berlin,
pp. 116–139.

[19] Tyugu, E.: Algorithms and Architectures of Artificial Intelligence. Volume 159 of
Frontiers in Artificial Intelligence and Applications, IOS Press 2007.

[20] Vogt, H.—Doaitse Swierstra, S.—Kuiper, M.F.: Higher Order Attribute

Grammars. In PLDI ’89: Proc. of the ACM SIGPLAN 1989 conference on program-
ming language design and implementation, pp. 131–145, ACM Press, New York, NY,
USA 1989.

Pavel Grigorenko received his Master of Science in Engineer-
ing degree from the Tallinn University of Technology in 2006. At
present he is a Ph.D. student at the Tallinn University of Tech-
nology and a researcher at the Institute of Cybernetics. He has
been research intern at Microsoft Research in Redmond in 2009.
His research interests include artificial intelligence, declarative
specification languages and synthesis of programs. He is also
interested in automated theorem proving.

Enn Tyugu has Dr. Sci. degree in computer science from Le-
ningrad Electrotechnical Institute, has served as a Professor of
computer science and software engineering at the Tallinn Uni-
versity of Technology and at the Royal Institute of Technology
(Sweden). He is a member of the Estonian Academy of Scien-
ces, of the IEEE Computer Society, of the Estonian Information
Technology Society. He has written computer science books in
Estonian, Russian and English. His present position is leading
research scientist at the Institute of Cybernetics of the Tallinn
University of Technology. His research interests are in intelligent
software, simulation and cyber-security.

