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Abstract. Recent industry requires efficient fault discovering and isolation solu-
tions in process equipment service. This problem is a real-world problem of typically
ill-defined systems, hard to model, with large-scale solution spaces. Design of pre-
cise models is impractical, too expensive, or often non-existent. Support service
of equipment requires generating models that can analyze the equipment data, in-
terpreting the past behavior and predicting the future one. These problems pose
a challenge to traditional modeling techniques and represent a great opportunity
for the application of AI-based methodologies, which enable us to deal with im-
precise, uncertain data and incomplete domain knowledge typically encountered in
real-world applications. In this paper the state of the art, theoretical background of
conventional and AI-based techniques in support of service tasks and illustration of
some applications to process equipment service on bio-ethanol production process
are shortly described.
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1 INTRODUCTION

Today, product liability, variety and production flexibility require measures in the
supervision of processes, which rule out errors during production. Modern indus-
try asks for efficient fault discovering and isolation methods in process equipment
service. This problem is a real-world problem of typically ill-defined systems, hard
to model, with large-scale solution spaces. In such cases the design of precise mod-
els is impractical, too expensive, or often non-existent. A possible solution can be
generated by leveraging resources as well as:

• problem domain knowledge of the process equipment faults that is necessary to
fix and

• field-data that characterize the behavior of process equipment faults.

The above-mentioned two kinds of resources determine two main approaches
found in artificial intelligence methods: knowledge-driven reasoning systems (prob-
abilistic and multi-valued systems) [6, 7, 8, 9, 15, 16, 20, 22, 32, 33, 37, 44] and
data-driven search and optimization approaches (neuro, neuro-fuzzy and evolution-
ary computing) [2, 10, 11, 12, 13, 23, 29, 36, 40, 41, 43]. The relevant avail-
able domain knowledge is typically a combination of first principles and experi-
ential or empirical knowledge, which is usually incomplete, uncertain and erro-
neous [1, 2, 3, 5, 7, 14, 16, 21, 27]. In connection with the data-driven search, the
available data are typically a collection of input-output measurements, representing
instances of the system’s behavior, and are usually incomplete and noisy [18, 19].

Process Equipment Service can be optimized to prevent failures and maximize
uptime while avoiding superfluous maintenance. Some of these objectives can be
accomplished by using tools that measure the system state and indicate arising fail-
ures. Such tools ask for high level of sophistication and incorporate monitoring, fault
detection, decision making, possible preventive or corrective actions and execution
monitoring [49]. Support service of equipment requires generating models that can
analyze the equipment data, interpreting their past behavior and predicting the fu-
ture one. These problems pose a challenge to traditional modeling techniques and
represent a great opportunity for the application of AI-based methodologies.

Because of the complexity of these tasks, AI-methods have been forced in the
implementation of fault detection and isolation tools. Some application of AI-based
techniques in support of service tasks, such as anomaly detection and identification,
diagnostics, prognostics, estimation and control, have been reported in [10, 11, 12].

In this paper the state of the art, diagnostics and prognostics tasks, theoretical
background of conventional and AI-based techniques in support of service tasks and
illustration of some most successful applications to process equipment service on bio-
ethanol production are shortly described. The detection procedure is implemented
on the laboratory plant in the Institute of Cryobiology and Food Technologies.
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2 DIAGNOSTICS AND PROGNOSTICS TASKS

The task of diagnosis is to find an explanation for a set of observations and – in
the case of prognosis – to forecast the course of events. Diagnosis can be broken
down into anomaly detection and failure identification, depending on the desired
granularity of information required [3, 4, 6, 7, 9, 14, 19, 20, 22, 30, 31]. Prognosis is
concerned with incipient failure detection, margin prediction, or overall performance
prediction. The latter can be prediction of efficiency, current system status, etc. The
outcome of diagnosis and prognosis processes drives planning and execution.

Possible planning includes planning of corrective action that can be either re-
active or proactive [25, 26]. Another possible plan is maintenance planning which
has to take into consideration not only the current system status, but also the
cost of maintenance (out of sequence vs. routine), disruption of service, and the
cost of further damage. All these steps can be interim fixes or tactical decisions.
Three concepts are discussed in [25]: clearly identified sources of data which iden-
tify problems that will be investigated; root cause analysis (RCA) to identify the
cause of a discrepancy or deviation and suggest corrective actions to potentially
prevent recurrence of a similar problem, or preventive action to ensure that dis-
crepancies do not occur and finally – remedial corrections of a problem which is
identified.

For example, improving the Department of Energy’s project the Root Cause
Analysis (RCA) concept identifies the key elements, necessary to make the mean-
ingful changes required to consistently deliver projects within cost and schedule
performance parameters; disciplined upfront planning; realistic estimates of cost
and schedule; and straight forward communication between the project director and
senior management [26]. Food-quality prevention is presented in [34], where the
knowledge-based method (decision tree) is implemented in understanding the food
safety aspects related to the brewing process and its technological equipment con-
trol in the Critical Control Points (CCPs). CCP is any point or procedure in a food
process where loss of control may result in an unacceptable health risk. Hazard
Analysis Critical Control Point (HACCP) forms a key component of many certified
compliance standards and is recognized as a main element of international trade in
food products. In operations research, specifically in decision analysis, a decision
tree (or tree diagram) is a decision support tool that uses a graph or model of de-
cisions and their possible consequences, including chance event outcomes, resource
costs, and utility [31, 32]. A decision tree is used to identify the strategy most
likely to reach a goal. Another use of trees is as a descriptive means for calculating
conditional probabilities.

Some of the challenges that diagnosis and prognosis systems face (besides im-
precise data and incomplete understanding of the problem domain) are the ability
to a changing environment which must allow the distinction between “normal” wear
or desired system changes and the reportable system deviation. The transients are
often very similar and a proper distinction becomes important. Environments do
not only change with time but also in space.



390 S. Vassileva, L. Doukovska, V. Sgurev

For example, the clustered damage precursors of the technological processes
are usually correlated with underlying damage for anomaly detection and fault-
mode isolation for prognostics health monitoring of electronics subjected to drop and
shock in [30]. Feature extraction techniques in the joint-time frequency domain are
developed along with pattern classifiers for fault diagnosis of electronics at product-
level [1, 31, 42, 48, 50].

Both corrective and preventive actions include investigation, action, review, and
further action if so required. Corrective action includes reconfiguration of the current
system or sub-system, de-rating the set-point, or changing the goal. Examples of
corrective actions include error proofing, visible or audible alarms, process redesign,
product redesign, enhancement or modification of existing training programs, im-
provements to maintenance schedules, improvements to material handling or storage.
A combination of such actions may be necessary to fully correct the problem.

Mobile diagnosis or remote monitoring and diagnosis systems are one possible
answer to the recent industrial plants control. However, accessibility and ability to
transmit are limited by bandwidth and cost. Therefore, the system may be equipped
with remote repair capabilities [35], which is a step towards an autarkic system. This
implies a more sophisticated decision maker that can reason about the information
gathered and come to an optimal judgment within the constraints of the system.

3 THEORETICAL BACKGROUND

3.1 Principles of Model-based Fault Detection and Isolation

Fault isolation task can only be realized if the fault to be isolated has been previously
taken into account in the model [28, 39]. There are different approaches for the
design of diagnostic observers: the geometric methods [31], algebraic methods [7,
24, 49], spectral theory-based methods [48] and frequency domain solutions [17].

The main goal of this part is the presentation of a Fault Detection and Iso-
lation (FDI) observer-based method applied to a non-linear process. The method
is designed with a dynamic model and the observer is determined using the eigen-
structure assignment approach. The principle of observer-based FDI approach is
to compute residuals by comparing estimated states with the measured outputs of
the actual plant. The residuals are ideally zero when a fault is not detected and
they become non zero if the actual system differs from the model. The isolation
of faults follows the detection stage and requires a set of residuals. Generation of
residuals is realized in two different ways: the structure residuals method and the
fault detection filter method.

Theoretical background of this method is as follows. An FDI system generally
includes two stages (Figure 1). The first one uses input-output observations to
elaborate a set of residual relations which enable fault detection and isolation. The
second one, which is the decision-making stage, involves residual (r) evaluation.
Independently of the method used for residual generation, the following conditions
have to be considered:
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• the mathematical model of the system is uncertain;

• measured signals are affected by noise with unknown characteristics;

• the occurrence of the fault in the course of time is unknown (unanticipated
fault).
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Figure 1. Fault Detection and Isolation (FDI) – general scheme

The principle of observer based FDI approach is to compute residuals by com-
paring estimated states with the measured outputs of the actual plant [34]. The
residuals are ideally zero (i.e., free of faults) and they become non zero if the actual
system differs from the model. Different reasons may cause non-zero residuals as
faults, disturbances or plant-model mismatches (model errors). The discrete state
equations describing the system can be written as:

x(k + 1) = Ax(k) +Bu(k) = F1fa(k) + E1d(k)

y(k) = Cx(k) + F2fs(k) + E2d(k) (1)

where x is the system state vector, y is the system output vector, u is the system
input vector, fa is a vector containing actuator faults, fs is vector containing the
sensor faults and d is a vector containing unknown input while A,B,C, F1, F2, E1, E2

are known matrices of appropriate dimensions.
The corresponding observer equations are:

x̂(k + 1) = Ax̂(k) +Bu(k) +H [y(k)− ŷ(k)]

ŷ(k) = Cx̂(k)

e(k + 1) = x(k + 1)− x̂(k + 1)

e0(k) = y(k)− ŷ(k) (2)
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where e(k) is the dynamic estimating error, e0(k) is the observation error, H denotes
the feedback gain matrix and is designed using eigen-structure assignment so that
the observer is stable.

The dynamic equation of the estimating error is:

e(k + 1) = [A−HC] e(k) + F1fa(k)−HF2fs(k) + (E1 −HE2)d(k), (3a)

which can be rewritten as:

e(k) = (zI − A+HC)−1 [(E1 −HE2) d(k) + F1fa(k)−HF2f s(k).] (3b)

The fault isolation is the step following the fault detection stage which requires
a set of residuals. Each residual that belongs to this set has to be individually
sensitive to the faults that may affect the process or the components. Usually, the
generation of residual set is realized in two different ways: the structured residuals
method and the fault detection filter method. When the process consists of inter-
connected subsystems, structured residuals can be generated individually for each
of them. However, the decomposition in subsystems requires a good knowledge of
the global plant. Structured residuals can then be generated with a bank of reduced
order observers [19]. Each observer is dedicated to one measured output; and, as
a consequence, one residual is generated for each observer and a fault occurring on
a measurement will affect the corresponding estimation. On the other hand, the
fault detection filter is a state observer designed in such a way that a residual de-
viation due to a particular fault is confined to a one-dimensional subspace of the
output space. Considering the dynamic estimation error e(k) and the observation
error e0(k) in Equation (2), we obtain:

e0(k) = Ce(k) + F2f s(k)− E2d(k) (4)

and the residual generator takes the following form:

r(k) = Ne0(k) (5)

where N is the filter matrix determined so that properties of isolability and de-
tectability are verified. Matrices H and N are determined by using eigen-structure
assignment procedure. This approach is built upon the fundamental eigen-pair equa-
tions:

(λj −G)vj = 0

wT
j

(λj −G) = 0

det(λj −G) = 0,

(6)

where λj is an eigen-value, vj is a right side eigen-vector of G and wjT is a left side
eigen-vector of G. The technique used for the detection filter is based upon the right
assignment approach. Using expression of e0(k) given in Equation (4) and replacing
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e(k) by its expression in Equation (3b), residual in Equation (5) becomes:

r(k) = NC(z − IA+HC)− 1((E1 −HE2)d(k) + F1fa(k)−HF2f s(k)))
+N(E2d(k) + F2fs(k))

(7)

Using Equation (7), H is designed such that the columns of matrices F1 and
HF2 are the side eigen-vectors of A + HC belonging to λi = 0 eigen-values. If the
unknown input d(k) is neglected, then the residual can be written as:

r(k) = N(Cz−1(F1fa(k)−HF2fs(k)) + F2fs(k)). (8)

The matrix N is designed in such a way that the effects of a fault are decoupled
from the effects of the other faults. If NCF1, NCHF2 and NF2 are zero in each
row, except in the ith row, the residual is affected by the ith fault.

3.2 Decoupling the Actuator Fault from the Sensor Fault

In the following, the method is applied to decouple the effect of an actuator fault
from a sensor fault [34]. The matrix N is decomposed into two matrices N1 and N2,
designed such that:

ra(k) = N1z
−1(CF1fa(k) + CHF2f s(k)) +N1F2fs(k) (9a)

and
rs(k) = N2z

−1(CF1fa(k) + CHF2f s(k)) +N2F2fs(k). (9b)

The conditions for ra(k) to be sensible only to fa(k) are given by:

N1CF1 6= 0 (10a)

N1CHF2 = 0 (10b)

N1F2 = 0 (10c)

The conditions for rs(k) to be sensible only to fs(k) are given by:

N2CF1 = 0 (11a)

N2CHF2 6= 0 (11b)

N2F2 6= 0 (11c)

3.3 Principle of AI-Based Fault Detection and Isolation

The AI-based fault detection and isolation is a data-driven technique where available
data are typically a collection of input-output measurements, representing instances
of the system’s behavior, and are usually incomplete and noisy. Models, derived from
the data for FDI, principally aim at the best possible estimation of those output
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measurements, which are influenced by the faults of interest. The data-based models
are usually non-linear in contrast to the functional analytical models which are often
linear and hence less complex.

The data-based models, usually black-box models, lie in the core of a modu-
lar diagnosis system concept (Figure 2) which has been chosen as separate fault
detection system. Each of these systems is handling only partial information on
the process. This is similar to different persons analyzing the same situation with
different methods and/or different sources of information.

Low level fault detection systems for control of one technical unit are to be
further combined within an overall system called a “state manager” [3]. This state
manager is detecting faults when the set of information provided by the sensors is
either incoherent (i.e., sensor fault due to fouling) or shows an abnormal working
mode, the supervision module also can detect the presence of a steady state (of
normal or abnormal state) based on principal components analysis (PCA) [9, 45],
data space reduction and multivariate statistical analysis. The overall fault detection
and diagnosis system must fit most of the plants and automatically adapts to any
evolution (new sensor, change of an actuator, etc.).

Detection of faults is carried out by the developed knowledge-based system its
rule-base consists of IF-THEN rules, defined by experts or by extracting knowledge
from the data records. Detection and diagnosis of hardware sensors is expressed as
“Normal status”, “Damaged sensor”, “No data”, etc. Detection of software sensor
is related with the process state variables status as well as “High”, “Low”, “Middle”
or “Normal”, “Toxic”, etc. for concentrations, specific rates, product quality factors
and ecological parameters. 
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Figure 2. Concept of a modular diagnosis system

Keeping in mind that for FDI only those outputs need to be estimated, which
are affected by faults, one can conclude that data-based models for FDI may be
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of reduced order and hence of less complexity due to an adequate input space in
comparison to functional models used for control.

The given set of input-output data of the possibly non-linear system can be used
to train a properly pre-structured non-linear model. The learning can be achieved
by adaptation due to a given performance index.

3.3.1 Fuzzy-Logic-Based FDI

Fuzzy models as a nonlinear black box-structure represent the relationships between
past observations [u(t−1), y(t−1)] and the future outputs y(t) of a general discrete
time dynamic system:

y(t) = g(u(t− 1), y(t− 1)) + v(t). (12)

The additive term v(t) accounts for the fact that the next output y(t) will not
be an exact function of past data. The goal of adequate modeling is to minimize
v(t) in order to achieve a good prediction. The function g(.) can be found from
its parametrized form with a finite dimensional vector θ by the approximation. For
convenience of calculations, a concatenation of two mappings is introduced: one that
takes the increasing number of past observations [u(t), y(t)] and maps them into
a finite dimensional vector ϕ(t), which is a regression vector and its components
are regressors, which give necessary freedom in the linear black-box case, and it
is natural to implement them in the nonlinear case. Finally the following model
structure is used:

ŷ (tθ) = g(ϕ (t) , θ). (13)

Fuzzy models, implemented according the concept of a modular diagnosis system,
are presented in the form of rule-bases with several parameters, which contribute to
the vague statements such as “large”, “small”, “middle”, to be precise of terms of
membership functions. A fuzzy rule basis is a collection of rules:

If (ϕ1 is A1,1) and (ϕd is A1,d), then (y is B1),

. . . (14)

If (ϕ1 is Ap,1) and (ϕd is Ap,d), then (y is Bp),

where the fuzzy sets Ai,j are double-indexed, i is the input coordinate and j is the
index of rule. The membership functions are denoted µAj,i

(ϕi) and µBj
(y).

The fuzzy rule basis exhibits the model structure with some features related to
the elementary functions in the decomposition:

y =

p∑
j=1

yj

(
d∏

i=1

µAj,i
(ϕi)

)
∆

p∑
j=1

yjωj (ϕ) = g (ϕ) , (15)

where ϕ = (ϕ1, . . . , ϕd) , yj is the point at which µBj
reaches its maximal value, and

the definition of the weight functions ωj(ϕ) is obvious.
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If
∑p

j=1

∏d
i=1 µAi,j(ϕi) 6= 1, then the defuzzification formula is modified according

to Wang (1992, [47]) as follows:

y = g (ϕ) =

∑p
j=1 yjωj (ϕ)∑p
j=1 ωj (ϕ)

. (16)

In such a case, rule basis may be directly built by crisp conclusions, because no
defuzzification is needed.

3.3.2 ANN-Based FDI

Concept of modeling the discrete time dynamic system, when ANN-based FDI is
implemented, lies on Equation (12), function parametrization and regression vector
ϕ(t), as shown above. A related NN-based model was suggested in [36]:

ŷ(t) = f(θ1, ϕ1(t)) + g(θ2, ϕ2(t)), (17)

where ϕ1(t) consists of delayed outputs and ϕ2(t) consists of delayed inputs. The
parametrized functions f and g can be chosen to be linear or non-linear by a NN.
A further motivation for this model is that it becomes easier to develop controllers.

Building linear model for the system is suggested by Qin and McAvoy in
1992 [38], because the residuals from this model will then contain all un-modeled
nonlinear effects. The NN-model could then be applied to residuals (treating in-
puts and residuals as input and output) to pick up nonlinearities. This approach is
attractive since the first step to obtain a linear model is robust and often leads to
reasonable solution. The second NN-step assures to obtain at least as good a model
as the linear one.

FDI realization is often based on multi-layer networks; its mapping is convolved
with each other. Let the outputs of the basis functions be denoted by

ϕ
(2)
k (t) = gk(ϕ(t)) = k(ϕ (t) , βk, γk) (18)

and collect them into a vector

ϕ(2) =
[
ϕ
(2)
1 (t), . . . , ϕ(2)

n (t)
]
. (19)

Instead of taking a linear combination of these ϕ
(2)
k as the output of the model

we could treat them as new regressors and insert then into another layer of the basis
function forming second function expansion:

g(ϕ, θ) =
∑
l

α
(2)
l , k

(
ϕ(2), β

(2)
l , γ

(2)
l

)
, (20)

where θ denotes the whole collection of involved parameters αk, βk, λk, α
(2)
l , β

(2)
l , γ

(2)
l .

Within the NN-terminology, Equation (20) is called two-hidden layer network. The
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basis functions k(ϕ(t), βk, γk) then constitute the first hidden layer, while k
(
ϕ(2),

β
(2)
l , γ

(2)
l

)
give the second layer. This procedure can be repeated in an arbitrary

number of times to produce multi-layer NN.

The question how many layers to use is not easy. In principle, with many basis
functions, one hidden layer is sufficient for modeling most practically reasonable
systems.

Another very important concept for applications to dynamical systems is that
of recurrent NN. This refers to the situation that some of the regressors used at time
t are outputs from the model structure at previous time instants:

ϕk(t) = g(ϕ(t− k), θ). (21)

It can also be the case that some components ϕj(t) of the regressor at time t are
obtained as a value from some interior node at a previous time instant. Such model
dependent regressors make the structure more complex and flexible.

Neural networks (NN) originated in an attempt to build mathematical models
of elementary processing units in the brain and the flow of signals between these
processing units. After a period of stagnation, these formal models have become
increasingly popular, with the discovery of efficient algorithms capable of fitting
them to data sets. Since then, neural nets have been applied to build computerized
architectures that can approximate nonlinear functions of several variables, and
classify objects, which is the task of FDI-systems. A neural net is nothing more
than a sophisticated black box nonlinear model that can be trained on data.

4 EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Experiments and the Process Equipment

The studied process is fermentation process for bio-ethanol production in batch
mode [46]. Bio-ethanol is ethanol (C2H5OH) produced by biological fermentation
of carbohydrates derived from plant-material and from wastes of food and beverages
industry.

The experimental work was carried out in a 3l laboratory bioreactor ABR01,
equipped with automated system for measuring and control of the physical variables
as well as temperature (by heating and cooling), partial pressure of the dissolved
oxygen (pO2) by the aerating volume (QO2), agitation speed (n, rpm) and feeding
rate (Figure 3).

The observed biochemical data include the biomass concentration X [million
cells/ml], substrate content S [mg/l] and ethanol content [mg/l]. The technological
conditions were maintained according to the full experiment plan.

In this case, the experimental plan design is oriented to discovering the influence
of key technological parameters and process variables on the final concentration of



398 S. Vassileva, L. Doukovska, V. Sgurev

ethanol, to eliminate measurement errors and to obtain measurements not biased
by some unavoidable factor.

 

 

 

n control 
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Figure 3. Instrumentation of the bio-ethanol production system

Monitoring bioprocesses by on-line (in-situ) techniques is highly desirable since
it has the potential to produce significant improvements in process control. Whilst
direct on-line measurement of the states may not be possible, the influence of their
variation can be observed in available on-line measurements. It is therefore possi-
ble in certain instances to obtain an on-line inference of the process states – such
an approach is termed a software-sensor [45]. In other words, a software-sensor is
a software algorithm giving an on-line estimation for process state variables, whose
analyses are normally time consuming, labor intensive and costly. A software-sensor
calculates this prediction from the available on-line measurements using a model
and proper mathematical inference.

The main idea of the advanced control strategy is that the efficiency of hard-
ware sensors is complemented by software sensors which combine the information
from the sensor network with a process model (or a model set from the Knowledge
Base) in order to predict some key-process variables (e.g., biomass content, fermen-
tation activity of microbial population, respiratory quotient (RQ), CO2 concentra-
tion, chemical oxygen demand (COD), Higher Heating Values (HHV) evaluation
of biomass fuels, CO2-recovery and many others, which are generally not available
on-line.

Software sensor systems are applicable to linear and non-linear systems, when
uncertainty or incomplete information is available, for mono-phase and multiphase
processes.
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4.2 Observer-Based FDI – Solution and Results

Suppose that for the studied process the known matrices A,B,C, F1 and F2 are
given as it was shown in Subsection 3.1:

A =


1.81 1 0 0 0
−0.81 0 0 1 0

0 0 −0.37 0 0
0 0 0 1.23 1
0 0 0 −0.23 0

 ,

B =


0.54
−0.52

0
−0.005
0.0048

 , (22)

C =

[
1 0 1 0 0
0 0 0 1 0

]

F1 =


0.54
−0.52

0
−0.005
0.005

 ,

F2 =

[
1
0

]
. (23)

Under conditions (A+HC)F1 = 0 and (A+HC)HF2 = 0, faults are decoupled
from estimation error dynamics and one stabilizing solution is given by matrix H:

H =


0.99 17.50
−0.81 0

0 0
0 0.27
0 −0.23

 (24)

Setting N =

[
0 −50

0.1 10.2

]
allows decoupling of r given by Equations (10) and (11),

to be satisfied with NCF1 =

[
0.25

2.10−3

]
, NCHF2 =

[
0

0.1

]
and NF2 =

[
0

0.1

]
.

The computation of residuals is then realized as follows:

r(k) =

[
ra(k)
rs(k)

]
= N(z−1(CF1fa(k)− CHF2fs(k)) + F2fs(k)). (25)
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4.3 Neuro-Fuzzy Prediction of Bio-Ethanol Production
with Fault Detection

The work reported here is concerned with the design and application of model-based
fault detection method to a biotechnological process for bio-ethanol production.

The main problems related to the alcoholic fermentation process include the lack
of robustness of the fermentation in the presence of fluctuations in the quality of
the raw material and modifications in microbial metabolism. These lead to changes
in the kinetic behavior with impact on yield, productivity and conversion of the
process. The lack of robustness can be corrected by adjustments in the operational
and control parameters of the process when fluctuations occur.

In order to accomplish this, it is important that a mathematical model be avail-
able to aid in the decision making, mainly when the difficulties of monitoring the key
process variables (concentrations of biomass, substrate and ethanol, cultivation con-
ditions) are taken into account. However, the operational changes described make
the prediction of the dynamic behavior of the process with a single model difficult,
as they lead to changes in microorganism kinetics. Thus, it would be of great ad-
vantage to have a mathematical model that could be easily adapted to changes in
operational conditions. A way to deal with this problem is to use fuzzy, neuro-fuzzy
or neural models. Recent investigations show these models perform better than first
principle models [45].

For building fuzzy model from data, generated by poorly understood dynamic
systems well as multi-factorial bio-systems, the input-output representation in the
form of NARX model is often applied. The NARX model can represent observable
and controllable models of a large class of discrete-time MISO non-linear systems. In
fuzzy modeling, the function F is represented as a collection of IF-THEN rules Ri:

Ri: IF y(k) is Ai,1 and . . . and y(k − ny + 1) is Ai,n

and if x(k) is Bi,2 and . . . and x(k − nu+ 1) is Bi,n, THEN:

y(k + 1) =

ny∑
j=1

ai,jy(k − j + 1) +
nu∑
j=1

bi,jx(k − j + 1) + ci, (26)

where Ai,l, Bi,1 are fuzzy sets and ai,j, bi,j and ci are crisp consequent parameters.
The weighted means output y(k + 1) of the model is:

y(k + 1) =

∑k
i=1 λi (y(k), . . . , x(k − nu + 1)) yi (k + 1)∑k

i=1 λi (y(k), . . . , x(k − nu + 1))
(27)

where the normalized form of the fulfillment degree is presented by:

λi (y(k), . . . , x(k − nu + 1)) =
λi (y(k), . . . , x(k − nu + 1))∑k
i=1 λi (y(k), . . . , x(k − nu + 1))

. (28)
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The model output y(k+ 1), affine in x(k) according to the following nonlinear form,
is as follows:

y(k + 1) = λi (y(k), . . . , x(k − nu + 1))

×
[∑ny

j=1 ai,jy(k − j + 1) +
∑nu

j=1 bi,jx(k − j + 1) + ci

]
+
∑k

i+1 λi (y(k), . . . , x(k − nu + 1))bi,1x(k).

(29)

In order to fine-tune the parameters which are related to the output in a non-
linear way, training algorithm known from the area of neural network can be em-
ployed. These techniques exploit the fact that a fuzzy model can be seen as a layered
structure (network) similar to artificial neural network. Hence, this approach is usu-
ally referred to as neuro-fuzzy modeling.

The main step of NN-training algorithm employment in adaptive parameter
identification of primary obtained fuzzy model is their transformation into a con-
nectionist layer structured NN model. The structure of NN model has to correspond
to the fuzzy model structure. The nodes in the first layer compute the membership
degree of the inputs in the antecedent fuzzy set. The product nodes P in the se-
cond layer represent the antecedent conjunction operator. The normalization node
N and the summation node S realize the fuzzy mean operator for Takagi-Sugeno
fuzzy models:

y =

∑k
i=1 λi (x)

(
aTi x+ bi

)∑k
i=1 λi(x)

. (30)

Using smooth antecedent membership functions MSF, such as Gaussian:

µ (x; c, σ) = exp
[
−((x− c) /2σ2)

]
. (31)

The parameters c and σ can be adjusted by gradient descent learning algorithm,
such as back-propagation.

Our previous investigations show that microbial growth of yeasts, which conduct
the fermentation of sugars into ethanol, is influenced by the rheological conditions in
the bioreactor. The rheological conditions are usually determined by the cultivation
temperature T [◦C] and the partial pressure of the dissolved oxygen pO2 [%], which
influences biotechnological variables – specific growth rate, connected directly with
the biomass content (X) and the limiting substrate (S) utilization. In the practice,
the both microbiological variables are controlled directly by sensors or inferentially
by implementing Kalman-filter procedure followed by the FDI-system.

In our case the latter approach was implemented and fault diagnosis is presented
in Figure 4. The isolation of faults from predicted X allows realization of bio-ethanol
prediction.

Detailed study of bio-ethanol production shows that limiting substrate (S) or
biomass content (X) could be implemented as best predictors of bio-ethanol content
(y2) and its best regressors – y(k − 1), y(k − 3) and y(k − 4). The fuzzy inference
system has 8 fuzzy rules in which the input variables are presented by 2-Bellmann
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Figure 4. Bio-ethanol prediction: process scheme with the biomass fault diagnosis and
isolation

shaped membership functions and the output variable is presented in the form of
linear function. The prediction procedure was realized by implementing Fuzzy Tool-
box in Matlab, version 6.5. with Simulink (Figure 5).

5 CONCLUSIONS

This paper presented the development of a Fault Detection and Isolation (FDI)
systems, based on two different principles, which have been applied to a non-linear
bio-ethanol production process. The first observer-based FDI method requires state
space model in the form of discrete state equations, describing the system, and
based on this description observer equations. The residual generator was deter-
mined so that properties of isolability and detectability are verified and its matrices
are determined by using eigen-structure assignment procedure. As demonstrated,
the observer-based method allows detecting and isolating unexpected faults. The
principle of observer based FDI approach is to compute residuals by comparing
estimated states with the measured outputs of the actual plant.

The second AI-based method is implemented for the bio-ethanol content predic-
tion by using information about biomass or limiting substrate concentration, which
is acquired from Kalman filter procedure, combined with FDI-system. After that
one of the variables X or S is used for numerical prediction of bio-ethanol by Adap-
tive Neuro-Fuzzy Inference System (ANFIS). More details of prediction procedure
are shown in [46].
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        c)

Figure 5. a) Experimental data for a fermentation process, carried out at the cultiva-
tion temperature T = 13[◦C], agitation speed n = 0 [1/min] and aeration volume
QO2 = 1 [l/l.min]; b) Prediction of ethanol by the exhaustive search (experiment
No. 12) on the basis of limiting substrate (S). The best predictors according the
exhaustive search from 36 fuzzy models are y(k−1), y(k−3) and y(k−4). The FIS-
model accuracy is 0.1589; c) Optimal 3D-surfaces of the FIS-model for bio-ethanol
(output) prediction by using the best predictors – regressors input1 (y(k − 1),
input2 (y(k − 3) and input3 (y(k − 4)).

The AI-based FDI leverage the tolerance for imprecision, uncertainty, and in-
completeness, which is intrinsic to the problems to be solved, and generate tractable,
low-cost, robust solutions to such problems. The synergy derived from hybrid sys-
tems stems from the relative ease with which we can translate problem domain
knowledge into initial model structures whose parameters are further tuned by local
or global search methods. The payoff for a conjunctive use of techniques is a more
accurate and robust solution than a solution derived from the use of any single
technique alone. This synergy comes at comparatively little expense because typi-
cally the methods do not try to solve the same problem in parallel but they do it
in a mutually complementary fashion. In other words, no single technique should
be expected to be the best for finding every model structure and tuning all system
parameters.

However, knowledge driven systems, which also involve fuzzy systems, have li-
mitations, as their underlying knowledge is usually incomplete. Sometimes, these
systems require the use of simplifying assumptions to keep the problem tractable
(e.g., linearization, hierarchy of local models, use of default values). Theoretically
derived knowledge may even be inconsistent with the real systems behavior. Expe-
riential knowledge, on the other hand, could be static, represented by a collection of
instances of relationships among the system variables (sometimes pointing to cau-
sality, more often just highlighting correlation). The result is the creation of precise
but simplified models that do not properly reflect reality or the creation of appro-
ximate models that tend to become stale with time and are difficult to maintain.

Data-driven methods also have their drawbacks, since data tend to be high di-
mensional, noisy, incomplete (e.g., DBs with empty fields in their records), wrong
(e.g., outliers due to malfunctioning/failing sensors, transmission problems, erro-
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neous manual data entries), etc. Some techniques, such as feature extraction, fil-
tering and validation gates, imputation models, and virtual sensors (which model
the recorded data as a function of others variables) have been developed to address
these problems.
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