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Abstract. Can specific behaviour strategies be induced from low-level observa-
tions of two adversary groups of agents with limited domain knowledge? This
paper presents a domain-independent Multi-Agent Strategy Discovering Algorithm
(MASDA), which discovers strategic behaviour patterns of a group of agents un-
der the described conditions. The algorithm represents the observed multi-agent
activity as a graph, where graph connections correspond to performed actions and
graph nodes correspond to environment states at action starts. Based on such data
representation, the algorithm applies hierarchical clustering and rule induction to
extract and describe strategic behaviour. The discovered strategic behaviour is
represented visually as graph paths and symbolically as rules. MASDA was evalu-
ated on RoboCup. Both soccer experts and quantitative evaluation confirmed the
relevance of the discovered behaviour patterns.

Keywords: Agent modelling, strategy discovery, behaviour analysis, multi-agent
system, RoboCup
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1 INTRODUCTION

Understanding agent behaviour is beneficial for many applications. First, it allows
agent’s behaviour to adapt to the behaviour of the agents with which it interacts.
Knowing the plans of other agents, agents can better plan their actions, whether in
competitive or cooperative settings [1, 2, 3]. Second, it allows users to understand
and study agents’ behaviour in a multi-agent system of interest, determining its
strengths and weaknesses [4]. This can be used to improve the behaviour of the
system of interest. Finally, understanding agents’ behaviour can be observed as
a step towards behaviour cloning [5, 6, 7]. It allows to reproduce the observed
behaviour in virtual worlds and serious games, thus enabling user training, testing
the behavioural performance of the multi-agent system and searching for an optimal
strategy.

We present the Multi-Agent Strategy Discovering Algorithm (MASDA), an algo-
rithm for discovering strategic patterns from raw multi-agent action data. MASDA
represents the observed multi-agent activity as a graph, where graph connections
correspond to performed actions and graph nodes correspond to environment states
at action starts. Each action is described with a set of features, including the place
where it was performed and the role of the agent that performed it. Feature taxono-
mies and low-level pre-processing routines for identifying performed actions in game
traces are the only required domain knowledge. Hierarchical clustering is applied to
merge instances of similar actions. Recurring activity is thus represented by single
graph paths. Graph paths with the highest number of merged actions are labelled
as strategic behaviour, because actions that frequently occur near in the domain
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space define important strategic concepts. MASDA presents the discovered strate-
gic behaviour visually, depicting the extracted graph paths, and symbolically, using
rules that describe characteristic patterns of the observed multi-agent interaction.

MASDA was applied on the RoboCup Simulation League [8]. RoboCup is
an international scientific initiative aiming to advance the state-of-the-art intelli-
gent robots. One of its oldest leagues is the RoboCup Simulation League, where
soccer teams comprised of software players (agents) play on a virtual field. Our
goal was to extract team strategies when attacking the goal. MASDA discovered
strategic behaviour patterns that experts confirmed as relevant. We also used the
discovered strategic patterns to detect strategic activity on-line. Tests showed reli-
able performance.

The paper is organised as follows. Section 2 presents related work in agent
modelling and behaviour analysis. Section 3 describes the MASDA algorithm. The
presentation is accompanied by examples from the RoboCup domain. Section 4
evaluates the algorithm in RoboCup. Section 5 concludes the paper and presents
future work.

2 RELATED WORK

2.1 Agent Modelling

Lettmann et al. [9] present a basic, formal model of agents as a universal description
of their properties, unifying existing work on the topic [10, 11, 12]. Agents act in
an environment abstracted as a state transition system. Based on sensor input, they
determine environment state using a vision function that considers sensor noise.
The central concept of the model is the agent’s mental state. The mental state
encompasses all concepts relevant to the agent’s decision making: the agent’s internal
state, its sensed environment state, cognition function (defines the agent’s internal
state based on its previous internal state and the sensed environment state), policy
function (defines the action to be executed according to the agent’s internal state)
and internal state transition function (defines the agent’s successive internal state
based on its current internal state and executed action). We accept the proposed
agent model with two extensions. First, the agent role is added as a parameter that
influences the agent’s behaviour. Second, we extend the definition of actions.

In the agent model, Lettmann et al. specify the policy function as an interface to
the agent’s behaviour model without specifying its implementation. Several agent
behaviour model implementations can be found in the literature, including the BDI
architecture [13], the PESC reference model [14], and layered architectures [15].
Because the MASDA algorithm is based on layered architecture, we describe only
that architecture in detail below.

Stone [15] introduces layered behaviour architectures, i.e., decomposing the
problem on several hierarchical behavioural levels. He argues that the activity pat-
terns of agents in a limited communication, real-time, noisy environment with both
teammates and adversaries, as in the RoboCup domain, are too complex to be
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addressed by a simple mapping from agent’s sensors to their actuators. Research
in human cognition also argues for the existence of several hierarchical behaviour
levels. Hollnagel [16] developed the Contextual Control Model (COCOM), which
decomposes human behaviour in four control modes: strategic (based on long-term
planning), tactical (based on procedures), opportunistic (based on present context),
and scrambled (random). Based on experience with imitation learning in First-
Shooter-Person games and the widely accepted COCOM model, Thurau et al. [7]
propose a three-level model for imitating human player behaviour using strategic
(long-term goals), tactical (smart localised behaviours, anticipation) and reactive
levels (basic movement, aiming and similar). The MASDA algorithm extracts strate-
gic behaviour from low-level game traces using layered behaviour architecture with
four hierarchical levels.

2.2 Extracting Behaviour Patterns from Low-Level Agent
Behaviour Observations

ISAAC [4] is one of the first systems for analysing teams participating in RoboCup.
It enables automated post-hoc, off-line agent-team analysis based on game traces.
ISAAC analyses team behaviour at three different granularity levels: individual
agent actions, inter-agent interactions and global team behaviour. Analysing an in-
dividual agent’s actions uses the C5.0 decision tree inductive learning algorithm,
an extension to C4.5 [17], to create rules for successful shots on goal. To analyse
inter-agent interactions, pre-defined patterns are matched to find prevalent patterns
of shots on goal. Finally, to develop rules for team successes or failures, game-level
statistics are mined from all available previous games, and inductive learning is again
used to determine the causes of a team’s success or failure. MASDA operates at
the granularity level of inter-agent interactions, but it extracts strategic interactions
from observations of low-level agent activity without using libraries with predefined
behaviour patterns.

Ramos et al. [18] present an approach for discovering tactical plays (e.g., of-
fensive plays) adopted by soccer-agents during a match within the context of for-
mations. Formations are represented by planar topological graphs. Tactical plays
are presented by the path of the ball occurring in a particular context. The planar
topological graph enriches this information with information about the players par-
ticipating in a particular tactical play and the zones in which the play has occurred.
MASDA extracts a team’s characteristic plays as sequences of performed agent ac-
tions (e.g., pass, dribble, attack support, intercept), not as the typical path of the
ball.

Kaminka et al. [3] and Horman et al. [2] present an approach for learning se-
quential coordinated team behaviours. Their method translates observations of
a dynamic environment into a time series of recognised basic actions. A trie (a pre-
fix tree), which compactly represents the time series of recognised basic actions, is
created. The trie is then analysed to find repeating subsequences characterising each
team. Iglesias et al. [1] also effectively use tries to store team behaviour sequences.
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MASDA represents multi-agent activity as graphs. This representation allows it to
extract coordinated team behaviour, considering both the sequence of performed
actions and the situation in which they were performed (e.g., the role of the agent
that performed the action, the place where it was performed).

Aler et al. [5] present an approach for determining reactive behaviour in robotic
soccer. They aimed to program RoboCup agents by imitating the actions of humans
playing soccer. Humans were allowed to control RoboCup agents in a virtual soccer
environment, thus collecting data about how humans act in soccer based on the
current situation. In particular, they examined the conditions under which human
players perform the following five actions: turn, run slow, run fast, kick ball and
kick to goal. The conditions were represented by information concerning the agent’s
position, the agent’s relative position to the ball, the two closest opponents and
the opponents’ goal. Reactive behaviour was represented by rules induced on the
data obtained from humans controlling soccer agents. MASDA learns not only the
conditions under which individual actions are performed but also strategic behaviour
patterns and the conditions when strategic patterns are started.

Thurau et al. [19] present an approach for learning strategic behaviour in 3D
gaming worlds, which contains two steps. First, a topological representation of
the 3D gaming world is learned by applying the Neural Gas Algorithm to find the
positions that a human player holds during a match. Artificial potential fields are
then placed into the topological map to guide the game-bots. Their work focuses on
behaviour cloning, not the understandability of the created model. MASDA creates
human-understandable models that allow studying observed multi-agent interactions
at different abstraction levels.

MASDA was published at the AAMAS conference [20]. This paper extends
the work presented in the AAMAS publication, formalising agent modelling and
presenting both a detailed description of the algorithm with symbolic description-
generation supplements and test results on a new dataset from RoboCup.

3 MULTI-AGENT STRATEGY DISCOVERING ALGORITHM

Section 3.1 presents a formal definition of agents and agent behaviour models. Sec-
tion 3.2 contains a detailed description of the Multi-Agent Strategy Discovering
Algorithm (MASDA), accompanied by RoboCup examples.

3.1 Formal Definitions

As described above, the formal definition of agents is based on the model of Lettmann
et al. [9], with two extensions. First, the agent role concept is added to the model
representing the agent’s responsibilities in the multi-agent system. In dynamic en-
vironments, agents change roles to fulfil their goal most effectively given the current
environment state. The policy function depends on the agent’s role. Second, we
extend the action definition by associating the triple (preconditions, parameters,
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effects) to each action. To execute an action, its preconditions must be met. The
way the actions are performed depends on their parameters. Effects define the en-
vironmental state when the action is terminated. This gives greater flexibility for
action definition.

Definition 1. Agent A is a tuple (S, SA, IA, RA,MA, AA, vA, adaptA) where

• S is a countable set of environmental states.

• SA is a countable set of internal representations of the environment’s states.

• IA is a countable set of A’s internal states.

• RA is a countable set of A’s roles.

• MA is a countable set of A’s mental states. The mental state of the agent, i.e.,
its “mind”, contains all information relevant to the agent’s decision making.

• AA is a countable set of A’s possible low-level actions, where each a ∈ AA

is defined as a = a(preconditions, parameters, effects) containing at least one
special action representing no action a0 = a0 (“always”, “”, “no change”).

• vA : S −→ Π(SA) is a probabilistic vision function that maps the current envi-
ronmental state to a probability distribution over all possible internal represen-
tations of the environmental states.

• adaptA : MA −→ MA is an adaptation mechanism that translates the current
mental state into another mental state.

A single mental state mA ∈MA is defined as a tuple mA = (sA, iA, rA, %A, πA, oA,
τA) where

• sA ∈ SA is the internal representation of the environmental state of agent A.

• iA ∈ IA is the current internal state of agent A.

• rA ∈ RA is the current role of agent A.

• ρA : SA×IA −→ IA is a cognition function that calculates the successive internal
state of the agent based on the internal representation of environmental state sA
and the current internal state iA.

• πA : IA × RA −→ Π(AA) is the agent’s probabilistic policy function. It defines
the probability of executing a low-level action a ∈ AA if the agent is in the
internal state iA ∈ IA and has role rA ∈ RA.

• oA is an action selector mechanism (e.g., Roulette wheel selector) that selects
an action for the agent based on the probability distribution over the possible
actions Π(AA).

• τA : IA × AA −→ IA is a state transition function. It defines the successive
internal state i′A ∈ IA if the agent performs action a ∈ AA in the internal state
iA ∈ IA.
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STRATEGY

MACROACTIONS

HIGH-LEVEL ACTIONS

LOW-LEVEL ACTIONS

Figure 1. Agent behaviour model

The formal agent definition defines the policy function πA as an interface to the
agent behaviour model, while the concrete application determines its implementa-
tion. To model multi-agent systems in adversary settings, MASDA uses the agent
behaviour model presented in Figure 1.

The agent behaviour model has a four-level architecture. At the highest level,
agents execute strategies to achieve their goals. Strategies (e.g., offensive, defen-
sive) provide general guidelines for distributing and applying available resources to
achieve a desired goal. The strategies decompose into macroactions, which represent
a sequence of actions taken to achieve a higher-level purpose (e.g., shot on goal).
Macroaction components are high-level actions, i.e., individual agents’ actions that
are meaningful from the perspective of the analysed domain (e.g., dribble, shot or
intercept). Finally, high-level actions contain low-level actions – elementary agent
actions like a movement or kick.

Definition 2. Agent behaviour model BMA, an implementation of agent policy πA,
is a tuple (iA, rA,MAA, HAA, AA,MGA, HGA, LGA) where

• iA ∈ IA is the current internal state of agent A.

• rA ∈ RA is the current role of agent A.

• MAA is a countable set of A’s possible macroactions, where each ma ∈ MAA

is defined as ma = ma(preconditions, parameters, effects), containing at least
one special action representing no macroaction ma0 = ma0 (“always”, “”, “no
change”).

• HAA is a countable set of A’s possible high-level actions, where each ha ∈ HAA

is defined as ha = ha(preconditions, parameters, effects), containing at least one
special action representing no high-level action ha0 = ha0 (“always”, “”, “no
change”).

• AA is a countable set of A’s possible low-level actions, where each a ∈ AA

is defined as a = a(preconditions, parameters, effects), containing at least one
special action representing no action a0 = a0 (“always”, “”, “no change”).

• MGA : IA × RA −→ Π(MAA) is a set of macro-level agent decision functions
that reflect an agent’s strategy. A macro-level decision function mg ∈ MGA
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defines the probability of executing macroaction ma for each ma ∈MAA if the
internal state of the agent is iA ∈ IA and its role is rA ∈ RA.

• HGA : IA × RA ×MAA −→ Π(HAA) is a set of high-level decision functions
that define the probability of executing high-level action ha for each ha ∈ HAA

according to the inner state of the agent iA ∈ IA, its role rA ∈ RA and the
executed macroaction ma ∈MAA.

• LGA : IA × RA × HAA −→ Π(AA) is a set of low-level decision functions that
define the probability of executing low-level action a for each a ∈ AA according
to the inner state of the agent iA ∈ IA, its role rA ∈ RA and the executed
high-level action ha ∈ HAA.

Definition 3. Agent strategy is a set of macro-level agent decision functions MGA.

3.2 Algorithm

As input, MASDA is given as follows:

• Raw data present in game traces

• Domain knowledge in the form of feature taxonomies (hierarchically organised
domain concepts).

MASDA consists of three steps:

1. Data pre-processing

(a) Detecting low-level agent actions from raw data present in game traces

(b) Detecting high-level agent actions from the extracted low-level agent actions.

2. Generating a visual strategic behaviour model

(a) Action graph creation

(b) Merging actions to create abstract action graphs

(c) Strategy selection and visual model generation.

3. Generating a symbolic strategic behaviour model

(a) Symbolic description of discovered strategy

(b) Generating a dataset for rule induction

(c) Symbolic model generation by rule induction.

MASDA outputs the multi-agent strategy:

• Visually as graph paths

• Symbolically using rules describing characteristic agent interactions.
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The first MASDA step (data pre-processing) transforms the raw multi-agent
action data present in game traces to a sequence of high-level agent actions (HAA).
RoboCup game traces [21] contain data about agent and ball movements at discrete
time points. There are approximately 6 000 equidistant time frames and 512 at-
tributes in one game trace. The first step of the data pre-processing step is to
transform the data in such game traces into low-level actions performed by agents
(AA), e.g., move, kick or dash. Heuristic rules are used, as in [22]. An example of
a rule is “An agent performs dash if it increases its speed”. Low-level agent actions
are further processed to discover high-level actions meaningful in soccer (HAA),
including dribble, pass and intercept. Heuristic rules are also used to discover high-
level actions [3, 22]: “A pass between two members of a team, p and q, occurred in
period t − k to t if the ball was kicked by one player p at time t − k and the ball
came into control of another player q at time t and, in interval [t− k+ 1, t− 1], the
ball was not under the control of any player and the game was not interrupted”.
Each high-level action is described by a set of features (e.g., the role of the agent
who performed the action, field area). Domain knowledge in the form of feature
taxonomies (i.e., a hierarchical representation of domain concepts) is used for this
purpose. Section 3.2.1 discusses representing data using taxonomies. The discov-
ered high-level actions and their descriptions, along with the corresponding feature
taxonomies, serve as input to the visual-model generation step.

In the second step (generating a visual strategic behaviour model), high-level
actions are processed to extract strategic behaviour, which is represented in the form
of graph paths. Section 3.2.2 describes this step in detail.

In the third step, the graph paths representing strategic behaviour are described
symbolically. Rules describing characteristics of the multi-agent interaction in the
game are also generated. Section 3.2.3 describes this step in detail.

3.2.1 Taxonomies

MASDA exploits domain knowledge using taxonomies. Taxonomy T is a hierarchical
representation of domain concepts. A concept x ∈ T is an ancestor of concept y ∈ T ,
x ← y, if x denotes a more general concept than y. Hierarchically ordered domain
knowledge allows data aggregation and generating data descriptions at different
abstraction levels.

MASDA uses taxonomies for agent roles (RA) and high-level agent actions
(HAA). It also uses three taxonomies to describe features of the perceived envi-
ronment state (SA): the position-, speed- and ball-related taxonomies. Figure 2
presents the high-level action taxonomy. At the highest level, high-level agent
actions are grouped as movements or kicks. Movement can be offensive or de-
fensive, whereas kick can be a pass, miss or shot on goal. Offensive movement
on the ball encompasses high-level actions, including control dribble, long dribble
and speed dribble, while offensive movement off the ball is attack support. Defen-
sive movement encompasses intercept. A pass can be done to a player or space.
A miss represents a kick that ends with the ball passing the goal line or side-
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line, being intercepted by the opponent, going to corner or an unsuccessful shot
on goal.

Action Movement Offensive On-the-ball Control-dribble

Long-dribble

Speed-dribble

Attack-supportOff-the-ball

Defensive Intercept

Kick Pass To-player

To-space

Miss Goalline

To-opponent

Corner

Sideline

Goal-miss

Shot-on-goal

Figure 2. High-level action taxonomy

3.2.2 Generating a Visual Strategic Behaviour Model

This section describes how strategic behaviour is discovered from the extracted high-
level multi-agent action sequence.

The central concept of the MASDA algorithm is the action graph, which is cre-
ated using the reconstructed high-level agent actions. An action graph is a directed
graph, where nodes represent the state space at the start of an agent’s high-level
action by means of action features and connections correspond to agent high-level
actions. In other words, a reconstructed high-level action instance is fully repre-
sented by a graph node-connection pair. Terminal actions (i.e., the last actions in
an action sequence) are represented as connections to terminal nodes, which are
nodes with no outgoing connections that define the state space at the end of a high-
level action sequence. The node positions of the action graph correspond to agent
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Figure 3. Action graph

positions in the domain space at high-level action start. Figure 3 presents an exam-
ple of an action graph. It is constructed using data from 10 matches of a reference
RoboCup team. The graph nodes are represented as white circles. The graph con-
nection patterns represent the type of performed high-level action: a dashed line
represents a pass, a wavy line represents dribbling and a solid line represents a shot
on goal.

Figure 4. Abstract action graph AAG15



90 V. Mirchevska, M. Luštrek, A. Bežek, M. Gams

Strategic behaviour cannot be easily discovered from the action graph because
it contains a lot of high-level action instances, many of which reflect reactive be-
haviour. Its level of detail must therefore be reduced, while preserving the char-
acteristics of the observed multi-agent behaviour. MASDA accomplishes this by
hierarchically clustering high-level action instances to form abstract action graphs
(AAG). High-level action instances similar in the domain space (i.e. started under
similar circumstances as represented by the action features of their starting graph
nodes and indicating the execution of a similar high-level action as represented by
their underlying graph connections) are merged together and marked as a single ab-
stract action instance. An abstract action instance is a single graph node-connection
pair in an AAG assigned with the common high-level action- and role-parent of the
merged high-level action instances. Each AAG is characterized by an abstraction
level. The distance between two (abstract) high-level action instances in an AAG,
computed by the instance distance metric defined below, is greater than its abstrac-
tion level. In other words, all high-level action instances which are closer to each
other than the abstraction level of an AAG are merged together and represented
by one abstract action instance (one graph node-connection pair) in the AAG. The
abstraction level of an AAG is a number greater than 0, with smaller numbers indi-
cating low abstraction and higher numbers indicating greater abstraction. Figure 4
presents an example abstract action graph at abstraction level 15 (AAG15). All
high-level action instances with distance smaller than or equal to 15.0 are merged
together and represented as one abstract action instance in AAG15. Therefore,
the distance between two (abstract) high-level action instances (represented by two
node-connection pairs) in this AAG computed using the instance distance metric
is greater than 15.0. AAG15 contains graph nodes and connections that represent
more than one similar high-level action; the number of nodes and connections in
Figure 4 is thus smaller than that in Figure 3. This is graphically depicted by larger
nodes and connections. A larger node/connection indicates that it contains more
high-level action instances from the initial action graph. The appropriate abstrac-
tion level must be carefully determined because too little abstraction leads to models
reflecting agents reactions to local environment changes and too much abstraction
may neglect important strategic behaviour details.

In hierarchical clustering, (abstract) high-level action instances are iteratively
merged together according to an instance distance-metric. The distance between
two (abstract) high-level action instances, i1 and i2, dist(i1, i2), considers the average
distance between their starting positions distpos(i1, i2), the average distance of their
roles in the role taxonomy distrole(i1, i2) and the average distance of their actions
in the high-level action taxonomy distaction(i1, i2). The instance distance-metric is
defined as the weighted sum of these three distances:

dist(i1, i2) = wpos · distpos(i1, i2) +wrole · distrole(i1, i2) +waction · distaction(i1, i2) (1)

where wpos represents the weight on position distance, wrole the weight on role dis-
tance and waction the weight on action distance.
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Distance distpos(i1, i2) is domain-dependent. For RoboCup, it is calculated as
the Euclidean distance between the position of the starting graph nodes of the high-
level action instances i1 and i2.

distpos(i1, i2) =
√

(i1.pos.x− i2.pos.x)2 + (i1.pos.y − i2.pos.y)2 (2)

Distance distrole(i1, i2) is domain-independent and defined as follows:

distrole(i1, i2) =
∑

∀(x,y):x∈i1.roles,y∈i2.roles

distrole(x, y)

|i1.roles| · |i2.roles|
(3)

where distrole(x, y) is the role-taxonomy distance of elements x and y, while |i1.roles|
and |i2.roles| are the number of distinct role instances in the starting graph nodes
of the high-level action instances i1 and i2, respectively.

Similarly, distaction(i1, i2) is defined as follows:

distaction(i1, i2) =
∑

∀(x,y):x∈i1.actions,y∈i2.actions

distaction(x, y)

|i1.actions| · |i2.actions|
(4)

where distaction(x, y) is the high-level action-taxonomy distance of elements x and y
and |i1.actions| and |i2.actions| are the number of distinct action instances in the
graph connections of the high-level action instances i1 and i2, respectively.

The taxonomy distance metric evaluates the dissimilarity between two taxonomy
elements n1 and n2. In MASDA, it is defined as follows:

distT (n1, n2) =

(
distanceT (n1,n2)

2·depthTmax

)
+
(
depthTmax

− depthT (common ancestor(n1, n2))
)

depthTmax
+ 1

.

(5)

This metric evaluates the dissimilarity of two elements based on the level of
their common ancestor. A common ancestor higher in the taxonomy indicates that
the elements are more dissimilar and vice versa. This factor, whose values range
between 0 and depthTmax

, is represented by the following element in the hierarchy
distance metric:

depthTmax
− depthT (common ancestor(n1, n2))

If the common ancestor of two pairs of compared elements has the same level,
the distance metric is higher for the pair whose shortest connecting path in the
taxonomy is longer. This factor, whose values range between 0 and 1, is represented
as follows:

distanceT (n1, n2)

2 · depthTmax

.

The taxonomy distance metric is normalised in the range [0, 1] by dividing it by
(depthTmax + 1).
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The merging process reduces the number of high-level action instances by rep-
resenting similar high-level action instances with one graph node-connection pair.
Connections in the abstract action graph with high numbers of high-level action
instances represent strategic behaviour, whereas those with fewer high-level action
instances represent reactive behaviour (i.e., agent reactions to dynamic changes in
the environment).

Figure 5. AAG15 with weak connection 3

Reactive behaviour is filtered using a measure called weak connection. Weak
connection of a path path in the abstract action graph is the minimum number of
high-level action instances encompassed by a single connection in path. Figure 5
presents a subgraph of the abstract action graph presented in Figure 4 in which the
weak connection of each path is at least 3. Compared to Figure 4, repeated agent
behaviour is clearer in Figure 5.

Strategic agent behaviour is extracted using a measure called strong connection.
Strong connection of a path path in the abstract action graph is the number of
paths of length length(path) from the starting action graph entirely encompassed
by path. The graph paths with the highest strong connections are macroactions
MAA representing strategic behaviour. Figure 6 represents a strategic macroaction
extracted by MASDA. It depicts a successful attack on the goal, which starts with
a pass from the area near opponent’s left corner to the penalty area where, after
dribbling, a successful shot on the right side of the goal is performed. The graph
path representing the discovered macroaction is the visual macroaction model.
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Figure 6. Visual model of a macroaction

ROLE LTeam.L-FW LTeam.C-FW LTeam.C-FW LTeam.C-FW

ACTION Pass-to-
player

Control-
dribble

Successful
shot-on-goal

Successful
shot-on-goal

(end)

POSITION
(x: 46.90,
y: -24.49)

(x: 45.15,
y: -12.47)

(x: 43.46,
y: -7.27)

(x: 53.15,
y: 5.47)

ABSTRA-
CTION

abs:15 abs:15 abs:15 abs:15

Figure 7. Symbolic description of a macroaction’s visual model

3.3 Generating a Symbolic Strategic Behaviour Model

This section describes how the visual strategic behaviour representation is enriched
with symbolic description in the form of rules.

The visual macroaction model is first enriched with symbolic description that
contains all high-level actions comprising the macroaction, the agent roles, the po-
sitions where the high-level actions were performed and the abstraction level of
the abstract action graph from which the macroaction was extracted. Figure 7
presents a symbolic description of the visual macroaction model in Figure 6. The
macroaction was extracted from the abstract action graph at abstraction level 15.
The macroaction starts with a pass performed by the left forward of the reference
team (LTeam.L-FW) in the area near the opponent’s left corner (coordinate values
x: 46.90, y: −24.49). The centre forward of the reference team (LTeam.C-FW) re-
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ceives the ball in the penalty area (coordinate values x: 45.15, y: −12.47), where he
performs a control dribble. After the control dribble, he shoots on the opponent’s
goal from the penalty area (coordinate values x: 43.46, y: −7.27). The ball ends
in the right side of the opponent’s goal (coordinate values x: 53.15, y: 5.47). The
symbolic description of visual macroaction model can be used to anticipate an op-
ponent’s future high-level actions. If an opponent’s activity matches a starting part
of a discovered macroaction, it is reasonable to conclude that the agent will continue
to execute that macroaction.

In the next step, rule induction determines the situation in which the macroac-
tion occurs. One dataset example corresponds to one performed high-level action.
Example features represent the situation at the start of the high-level action (e.g.,
the players’ positions on the field, their position relative to the ball, movement speed
and direction, ball position and speed, ball distance to opponent’s goal), and the
class value is the pair agent role:performed high level action. Figure 8 shows four
possibilities for selecting positive and negative training examples for rule induction.
Each circle in the figure represents one example (start of high-level action instance).
The circles annotated with ‘+’ represent positive examples. The circles annotated
with ‘−’ represent negative examples. The examples represented with empty cir-
cles are not included in the training dataset. The connection pattern represents
the type of performed high-level action. A dashed line represents a pass, whereas
a wavy line represents a dribble. Positive and negative examples can be selected as
follows.

1. Positive examples represent all high-level action instances that correspond to
a connection of interest, whereas negative examples correspond to all high-level
action instances that start in the same node as the connection of interest but con-
tinue along the node’s remaining connections. Figure 8 a) presents an example
in which the pattern ‘dribble from middle-field to penalty area’ is learnt. The
training examples represent the difference between high-level action instances
representing dribble to penalty area and pass to player, such that all high-level
action instances start in the middle-field.

2. Positive examples represent all high-level action instances that correspond to
a connection of interest, whereas negative examples are all other high-level action
instances. Figure 8 b) presents an example in which the pattern ‘dribble from
middle-field’ is learnt. The training examples represent the difference between
the high-level action instances representing dribble starting in the middle-field
and all other high-level action instances.

3. Positive examples represent all high-level action instances contained in a node
of interest, whereas negative examples represent all other high-level action in-
stances. Figure 8 c) presents an example in which the pattern ‘start of offen-
sive action from middle-field’ is learnt. The training examples represent the
difference between high-level action instances representing the start of offensive-
actions from the middle-field and all other high-level action instances.
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4. Positive examples represent all high-level action instances that correspond to
a connection of interest, whereas negative examples represent high-level action
instances that do not start in the node in which the connection of interest starts.
Figure 8 d) presents an example in which the pattern ‘dribble from middle-field
to penalty area’ is learnt. The training examples represent the difference between
high-level action instances representing dribble from the middle-field to penalty
area and all other high-level action instances that did not start in the middle-
field.

MASDA uses the second approach to select positive and negative examples.
When the second approach is used, the number of negative examples is much higher
than that of the positive. Standard induction algorithms do not perform well when
the training dataset has strongly skewed class distribution. MASDA thus selects
a subset of negative examples using two approaches:

• Select examples that represent near misses, i.e., similar action instances to the
action concept of interest with respect to the previously described instance dis-
tance metric. In this case, the resulting rules represent local differences between
similar high-level action concepts.

• Select examples that represent far misses, i.e., action instances that represent
much different action concepts than the action concept of interest with respect
to the previously described instance distance metric. In this case, the resulting
rules represent a global description of the high-level action concept of interest.

MASDA uses the SLIPPER algorithm [23] for rule induction. SLIPPER is
suitable for this domain because it is a set-valued rule inducer, meaning that the
value of a feature can be a set. First, it enables a compact representation of the
environment when high-level actions start. The attribute ‘approaching the ball’ is
used as an example. To capture which of the 22 players on the field approach the
ball without using set-valued attributes, 22 Boolean features of the type ‘player
id:approaching the ball’ are needed. If set-valued attributes are allowed, a single
attribute captures this information. Secondly, it allows creating rule conditions at
different abstraction levels. During one attack on the goal, the left fullback of the
defending team approaches the ball, i.e., tries to stop the attack; in another, the
right fullback approaches the ball. Due to the combination of set-valued attributes
and feature taxonomies, such situations can be represented as a single rule condition:
opponent’s fullback approaches the ball.

Finally, Figure 9 describes situations in which components of the example macro-
action (Figure 6) are executed, i.e., the symbolic macroaction model. Rule a) in
Figure 9 presents a situation in which the left forward player performs a pass.
The ball is in the left wing (Ball:Left-wing). An opponent’s fullback is left behind
(RTeam.FB:Back). An opponent’s middle-fielder, centre fullback and goalkeeper
move towards the player with the ball (RTeam.MF:Incoming

∧
RTeam.

C-FB:Incoming
∧

RTeam.GK:Incoming) to stop the attack. The opponent’s right
middle-fielder is back in the team’s defending third (RTeam.R-MF:Attacking-half.
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Figure 8. Selection of positive and negative examples for rule induction
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L-FW: to-player

C-FW: control-dribble

C-FW: successful-shot

a) IF

Ball:Left-wing
∧

RTeam.FB:Back∧
RTeam.MF:Incoming

∧
RTeam.C-FB:Incoming

∧
RTeam.GK:Incoming

∧
RTeam.R-MF:Attacking-

half.Attacking-third
∧

LTeam.C-FW:Incoming
∧

LTeam.MF:Incoming

THEN
LTeam.L-FW:
Pass-to-player

b) IF

LTeam.C-FW:Has-ball
∧

LTeam.L-FW:Near
∧

RTeam.GK:Short-distance
∧

RTeam.FB:Medium-distance
∧

RTeam.L-MF:Back

THEN
LTeam.C-FW:
Control-dribble

c) IF

LTeam.C-FW:Attacking-
half.Attacking-third.Penalty-box∧

LTeam.R-FW:Attacking-
half.Attacking-third.Penalty-box∧

LTeam.L-FW:Medium-distance∧
RTeam.GK:Short-distance

THEN
LTeam.C-FW:

Successful
shot-on-goal

Figure 9. Symbolic macroaction model

*Attacking-third) to help in the defence. The centre forward and a middle-fielder of
the attacking team move towards the ball (C-FW:Incoming

∧
LTeam.MF:Incoming)

to assist the left forward player in the attack. Rule b) in Figure 9 presents a situation
in which the centre forward player starts a control dribble. The center forward player
of the attacking team has the ball (LTeam.C-FW:Has-ball) and its left forward is
near him (LTeam.L-FW:Near). The opponent’s goalkeeper is also near the centre
forward of the attacking team (RTeam.GK:Short-distance), an opponent’s fullback is
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at medium distance from the ball (RTeam.FB:Medium-distance), and its left middle-
fielder is left behind (RTeam.L-MF:Back). Except for the opponent’s goalkeeper,
there is no direct attack on the ball from the opponent’s side. Finally, Rule c) in
Figure 9 presents a situation in which the centre forward player shoots on the goal.
The centre forward of the attacking team and its right forward are in the penalty
box of the opponent’s team (LTeam.C-FW:Attacking-half.Attacking-third.Penalty-
box

∧
LTeam.R-FW:Attacking-half.Attacking-third.Penalty-box). The left-forward

of the attacking team is at medium distance from the ball (LTeam.L-FW:Medium-
distance). The opponent’s goalkeeper is near the centre forward (RTeam.GK:Short-
distance).

Although we present only one rule per macroaction component in Figure 9, the
symbolic macroaction model contains a set of rules for each macroaction compo-
nent. Each rule is associated with a confidence level outputted by SLIPPER. The
probability of executing a concrete high-level action in a given environment state is
proportional to the confidence levels of the rules of the high-level action that cover
the particular environment state.

4 EVALUATION

The MASDA evaluation was performed on the reference team Helios [24], currently
one of the most successful teams in the RoboCup 2D Simulation League, having
won the tournament in 2010. We collected data from 10 games in which this team
scored many goals. Because the analysis focused on attacks on the goal, repetitions
of patterns that ended with successful shots on goal were needed for MASDA to be
able to discover strategic offensive behaviour. The games encompass competitions
of Helios against 9 opponents. The average number of scored goals per game by
Helios is 7.4 (ranging from 4 to 15).The merged data of the 10 games are denoted
as a reference game.

4.1 Human Analysis

Figure 10 presents the team’s successful attacks on the goal. This is an abstract
action graph of the reference game, where the abstraction level is 10, the weak
connection is 3 and the strong connection is 2. The figure shows that the attacks
on the goal are mainly conducted from the right side of the field, but attacks also
come from the middle and left sides of the field. The attacks along the right side
are mainly conducted by the right forward player, who dribbles to the area near
the right opponent’s corner. When he reaches this area, he passes the ball to the
centre forward in the penalty area. The centre forward performs a control dribble
and shoots on the goal, passes the ball to the left forward player, also in the penalty
area, or returns the ball to the right forward player. When the attack is performed
from the left side, the left forward dribbles to the area near the opponent’s left
corner, where he passes the ball to the centre forward in the penalty area, who
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Figure 10. Helios’ offensive play – AAG10 with weak connection 3 and strong connection
2 of the reference game

then shoots on goal. The attack in the centre of the field represents a situation in
which a dribbling player manages to reach the penalty area, after which he shoots on
the goal. Figure 11 presents all macroactions in the reference AAG10 that represent
successful attacks on the goal. Figure 11 e) shows the example macroaction described
in Section 3.

Two soccer experts evaluated the relevance of the discovered strategic patterns.
They assessed the adequateness of the rules in the symbolic model of strategic
macroaction situations. Each rule condition was labelled as very important, mean-
ingful or irrelevant for the analysed situation. The experts designated 34 % of the
rule conditions as very important, 34 % as meaningful and 32 % as irrelevant. They
confirmed that the symbolic description captured the main advantages and disad-
vantages of the analysed situations.

4.2 Quantitative Evaluation

The quantitative evaluation measures to what extent strategic macroactions discov-
ered in a training dataset are also present in a separate test dataset.

Tests were performed for three cases. In the first case, the visual model, i.e.,
the graph path representing a discovered macroaction, was used for classification.
The visual model classifies an example as strategic if the minimum distance between
the example and a node in the graph path representing the discovered macroaction
(defined in Section 3.2.2) is less than the abstraction level of the abstract action
graph from which the macroaction was extracted. The second case uses the sym-
bolic model, i.e., rules representing the situations in which a discovered macroaction
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R-FW:pass-to-player →
C-FW:control-dribble →

FW:shot-on-goal

C-FW:attack-support →
C-FW:control-dribble →

FW:shot-on-goal
a) b)

L-FW:pass-to-player →
Field-player:control-dribble →

Field-player:shot-on-goal

C-FW:attack-support →
C-FW:control-dribble →

C-FW:shot-on-goal
c) d)

L-FW:pass-to-player →
C-FW:control-dribble →

C-FW:shot-on-goal

Field-player:attack-support →
Field-player:long-dribble →

Field-player:shot-on-goal
e) f)

Figure 11. Macroactions representing successful attacks on the goal
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occurs. The symbolic model classifies an example as strategic if it is covered by at
least one rule of the model. The third case concerns both the visual and symbolic
models. An example is classified as strategic in this case when both the visual and
symbolic models classify it as such.

ABS 0 ABS 4 ABS 8

ABS 12 ABS 14 ABS 20

Figure 12. Reference path at different abstraction levels

The evaluation was executed on the example macroaction presented in Figure 6
as a reference path. The reference path is extracted from data from 10 team games
merged together. Figure 12 shows the reference path at several abstraction le-
vels. The thicker lines represent the reference path, whereas the thin lines represent
performed high-level actions contained in the reference path.

The evaluation was performed using the leave-one-game-out scheme. We per-
formed 10 evaluation runs. In each of the 10 runs, 9 of the games were merged
together to create a training game AGlearn , while the remaining 1 game represented
a test game AGtest . Each test run encompassed evaluation of the performance of the
visual and symbolic models at abstraction levels 1 through 25. Therefore, abstract
action graphs of the training game AAGabs−learn and the test game AAGabs−test were
created for abstraction levels 1 through 25. At each abstraction level, the reference
path was used to determine a learning path out of the training game according to
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a) b) c)

Figure 13. Macroaction at abstraction level 20 in a) the reference game (10 matches),
b) a training game (9 matches) and c) a test game (1 match)

which the visual and symbolic macroaction models were created. In addition to this,
the reference path was used to select the test set out of the test game. The pre-
sentation of one evaluation run at one abstraction level that follows is accompanied
with an example shown in Figure 13. The upper row of Figure 13 a) contains the
example macroaction from Figure 6 (i.e. the reference path) at abstraction level 20,
while the upper rows of Figure 13 b) and Figure 13 c) present the example macroac-
tion at abstraction level 20 in the training game AAG20−learn and the test game
AAG20−test . The lower row of Figure 13 shows the constituent high-level actions
of the example macroaction in the three cases. A learning path in AAGabs−learn is
determined as the path with the same length as the reference path that contains
the most examples (i.e., high-level action instances) along the reference path. The
example learning path in AAG20−learn presented in Figure 13 b) contained 79 % of
the high-level actions of the reference path. The visual model is the graph path
of AAGabs−learn that represents the learning path. The symbolic model is a set of
rules generated for the learning path, as in Section 3.2.3. After creating the visual
and symbolic models, positive and negative examples in the test game must be de-
termined. Positive examples in AAGabs−test are all performed high-level actions in
AAGabs−test contained in the reference path. Figure 13 c) presents the positive test
examples in AAG20−test . Although all other examples in the test game are negative,
we restricted the set of negative examples to those within a predefined maximum
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negative distance from the reference path. The focus is thus set on negative (non-
strategic) examples, which can easily be misclassified as strategic. In the performed
evaluation, the maximum negative distance was set to the maximum distance be-
tween each consecutive pair of nodes of the reference and learning paths (i.e., the
distance between the first nodes of the reference and learning paths, the distance
between their second nodes, and so on) incremented by the abstraction level. Having
determined the test dataset, we calculate the performance of the visual model and
the symbolic model separately, as well as the merged prediction of the both models
using the F-measure. This procedure was repeated for abstraction levels 1 through
25 in each of the 10 evaluation runs. The average F-measure values per abstraction
level were calculated.

abstraction

F
-m
e
a
s
u
r
e

VISUAL MODEL

SYMBOLIC MODEL

VISUAL AND 

SYMBOLIC MODEL

Figure 14. Evaluation of models’ performance

Figure 14 presents to what extent the strategic behaviour learned on a training
dataset is also found in a separate test dataset. Model performance increases as it
approaches abstraction level 9, where it reaches the highest value (94 % with respect
to F-measure); it then starts to fall. At lower abstraction levels, the number of
examples used to build the models is small. Lower abstraction levels thus produce
more specific models. Higher abstraction levels indicate highly abstract but less
accurate models because the graph nodes and connections contain many examples,
some of which may represent different action concepts. The best model performance
is achieved at the abstraction level that best balances specificity and abstraction,
which is abstraction level 9 on the analysed data.

5 CONCLUSION

MASDA is a general domain-independent algorithm for discovering strategic be-
haviour in multi-agent systems. It presents two novel features. First, it constructs
strategic patterns from low-level actions by means of abstraction and complex al-
gorithms using only basic domain knowledge in the form of feature taxonomies.
Second, MASDA constructs strategic patterns in visual and symbolic rule form and
combines both mechanisms to improve comprehensibility and classification accuracy.
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MASDA can be used to study and understand the behaviour of agents in multi-
agent systems. It was extensively tested on RoboCup. Experts confirmed the rele-
vance of the strategic behaviour patterns discovered by the algorithm. Quantitative
evaluation of the models developed by MASDA in terms of F-measure showed reli-
able performance, with the F-measure reaching 94 %. MASDA can also be used for
behaviour cloning. This was successfully accomplished in robotic Keepaway [25].

The main task for the future is testing the algorithm in a domain substan-
tially different from RoboCup. Currently, the algorithm is being used to analyse
human behaviour during asymmetric conflicts in urban environments [26], where
initial results are encouraging. Perhaps even more importantly, MASDA’s cloning
capabilities need to be tested in a more complex, real-world domain.
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