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Abstract. Argumentation frameworks for ontology reasoning and management
have received extensive interests in the field of artificial intelligence in recent years.
As one of the most popular argumentation frameworks, Besnard and Hunter’s frame-
work is built on arguments in the form of 〈Φ, φ〉 where Φ is consistent and minimal
for entailing φ. However, the problem of generating arguments over ontologies is
still open. This paper presents an approach to generating arguments over DL-Lite
ontologies by searching support paths in focal graphs. Moreover, theoretical results
and examples are provided to ensure the correctness of this approach. Finally, we
show that approach has the same complexity as propositional revision.
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1 INTRODUCTION

Description logic Lite (DL-Lite) [5], which is a family of lightweight description
logics (DLs) [8], is the logical foundation of OWL 2.0 QL – one of the three profiles
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of OWL 2.0 for Web ontology language recommended by W3C [18]. The DL-Lite
family is specially tailored for efficient reasoning and, at the same time, relatively
high expressing power. DL-Lite provides constructors which are necessary to express
many conceptual models such as Entity-Relationship Model (ERM) and Unified
Modeling Language (UML) class diagrams.

Inconsistency is not rare in ontology applications [7, 24] and may be caused by
several reasons, such as errors in modeling, migration from other formalisms, ontolo-
gy merging, and ontology evolution [20, 9, 10, 31]. Unfortunately, based on standard
inference, the inference of DL-Lite encounters the problem when inconsistency oc-
curs, which is referred to as the triviality problem. That is, any conclusions, that are
possibly irrelevant or even contradicting, will be entailed from an inconsistent DL-
Lite ontology under the standard inference. As one kind of fundamental methods of
handling inconsistency in DLs, paraconsistent approach is applying a non-standard
inference to obtain meaningful answers from inconsistent ontologies [17, 30, 29, 26].
In recent days, some paraconsistent approaches based on logic-based argumentation
are presented to deal with inconsistent ontologies [4, 14, 27, 6, 15] by applying some
dialogue mechanisms (e.g., Dung’s framework [13] and Besnard and Hunter’s (BH’s)
framework [12]) to assess inconsistent information and information causing incon-
sistency. A common assumption for logic-based argumentation is that an argument
contains two parts: support and consequent [12]. Formally, an argument A for some
axiom φ in some ontology O is a pair 〈Φ, φ〉, where both Φ is a minimal consistent
subset of O and Φ is an implicant of φ (i.e., Φ |= φ). The problem about generating
arguments over ontologies is important since it is the first step to construct BH’s
framework. However, this problem is still open in DLs.

Recently an approach based on connection graphs presented by Efstathiou and
Hunter [21, 23] (for short, the EH’s approach) has been developed to search and
generate arguments for propositional axioms. However, it is not straightforward
to adapt this approach in DL-Lite, since arguments for DL-Lite complex axioms,
namely, concept inclusions in the form of C v D, concept assertions in the form of
C(a) and role assertions in the form of R(a, b) where C,D are concepts, R a role
and a, b are individuals, are not directly captured within the connection graphs.
For instance, it is infeasible to search arguments whose either support or consequent
contains some role assertions within a connection graph since each node of connection
graph describes an axiom with respect to a single individual. Additionally, a DL-
Lite ontology often has infinite number of models and some models might also be
infinite.

To overcome these difficulties, in this paper we develop an edge-labeled con-
nection graph to search and generate arguments over DL-Lite ontologies. In our
previous proceedings [25], we present an approach to obtaining a searching scope of
all arguments for some axiom in a given ontology. Compared with [25], this paper
refines and extends it by adding an approach to generating all arguments. The main
innovations and contributions of this paper can be summarized as follows. Firstly,
we present an edge-labelled connect graph called attack graph to characterize a DL-
Lite ontology. Within an attack graph, we show that the resolutive relation between
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two DL axioms can be equivalently captured by the edge that connects them (where
axioms are taken as vertices). Secondly, we define a closed attack graph (called
closed graph) to avoid those redundant vertices and, based on the labels of edges,
we then introduce a focal graph within a closed graph to remove irrelevant edges
to cut down the search space for arguments. We prove that all arguments for an
axiom are indeed captured by its focal graph. Finally, we define support paths to
generate arguments by further selecting appropriate paths in a focal graph. Each
support path can be proved to correspond to an argument. Moreover, our approach
does not bring a higher complexity than that of the EH’s approach to generating
arguments for propositional axioms. Besides, we have provided theoretical results
and examples to ensure the correctness of this approach.

This paper is structured as follows. The following section briefly reviews the DL-
Lite family and arguments. Section 3 presents attack graphs over ontologies. Sec-
tion 4 introduces an approach to searching and generating arguments and Section 5
applies our proposal approach to discuss a practical example. The last Section 6
concludes this paper and discusses our future work.

2 PRELIMINARIES

In this section, we briefly review the DL-Lite family and arguments over ontologies.
For more comprehensive background knowledge of DLs, we refer the reader to some
basic references such as the DL-Lite family [1, 8] and arguments [27, 6].

2.1 The DL-Lite Family

Description logics are formal knowledge representation languages whose expressive
powers are between propositional logic and first-order logic [8]. DLs can represent
the domain of interest in terms of concepts, denoting sets of objects, and roles,
denoting binary relations between (instances of) concepts. Complex concept and
role expressions are constructed starting from a set of atomic concepts and roles
by applying suitable constructors. Different DLs allow for different constructors.
Properties of concepts and roles can be specified through inclusion assertions, stating
that every instance of a concept (or role) is also an instance of another concept (or
role).

As an important family of DLs, DL-Lite is specifically tailored to capture basic
ontology languages, while keeping all reasoning tasks tractable. In this paper, we
consider the core language for the whole family of DL-Lite: DL-Litecore.

Let NC , NR and NI be pairwise disjoint and countably infinite sets of concept
names, role names, and individual names, respectively. Concepts and roles are
inductively constructed according to the following rules:

role: R → P | P−;
basic concept: B → A | ∃R;

general concept: C → B | ¬B;
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where A ∈ NC , P ∈ NR, and P− the inverse of the atomic role P . B denotes a basic
concept, that is, a concept that can be either an atomic concept or a concept of
the form ∃R. R denotes a basic role, that is, a role that is either an atomic role
or the inverse of an atomic role. Note that ∃R is the standard DL constructor of
unqualified existential quantification on basic roles. We write R− = P− if R = P ,
and R− = P , if R = P−. We also write ¬C = ¬A if C = A (or ¬E = ¬R if E = R),
and ¬C = A if C = ¬A (or ¬E = R, if E = ¬R).

In this paper, we use the letters A (with subscripts) for a concept name, B for
a basic concept, the letters P for a role name, the letters C,D for general concepts, R
for a basic role, E for a general role, a, b for (named) individuals, x, y for individual
variables and t, s for (named) individuals or individual variables. Let > and ⊥
denote the universal concept and the bottom concept, respectively.

A DL ontology O contains two parts, namely ABox and TBox, where ABox
is used to represent extensional information and TBox is used to represent in-
tensional knowledge. A TBox is a finite set of concept inclusions in the form
of B v C and an ABox is a finite set of assertions, namely, concept assertions
in the form of C(a) and role assertions in the form of P (a, b). For instance,
Professor v ∃teachesTo is a concept inclusion, Professor(russell) is a concept as-
sertion and teachesTo(russell ,wittgenstein) is a role assertion. Concept inclusions,
general concept assertions, role assertions and inverse role assertions are called ax-
ioms. An axiom is called positive if it contains no ¬, and negative otherwise. For
instance, Professor(russell) is a positive axiom while ¬∃hasChildren(dink) is a neg-
ative axiom. A sub-ontology O′ of O is an ontology whose axioms are in O, denoted
by O′ ⊆ O. In this sense, we also say O is a sup-ontology of O′. If, in addition,
O′ 6= O, we write O′ ⊂ O. We use O ∪ S and O \ S to denote the union and
difference of O and S, respectively.

The semantics of a DL is given in terms of interpretations, where an inter-
pretation I = (∆I , ·I) consists of a non-empty interpretation domain ∆I and an
interpretation function ·I that assigns to each A a subset AI of ∆I , and to each P
a binary relation P I over ∆I ×∆I and satisfies the following conditions:

P−
I

= {(x, y) | (y, x) ∈ P I};
(¬B)I = ∆I \BI ;
∃RI = {x | ∃y. (x, y) ∈ RI}.

An interpretation I is a model of an/a inclusion axiom (concept assertion, role
assertion) B v C (C(a), P (a, b)) if BI ⊆ CI (aI ∈ CI , (aI , bI) ∈ P I), denoted by
I |= B v C (I |= C(a), I |= R(a, b)), respectively. We say CI an extension of C
with respect to I. Similarly, I is a model of C1 v C2 (C(a)) if CI1 ⊆ CI2 (aI ∈ CI).

An interpretation I is a model of TBox T (ABox A) if I is a model of all axioms
in T (A), denoted by I |= T (I |= A), respectively. Let O = (T ,A) be an ontology.
An interpretation I is a model of O if I |= T and I |= A. Let Mod(O) be the
set of all models of O. O is consistent if Mod(O) 6= ∅, and inconsistent otherwise.
Let φ be an axiom. O entails φ, denoted by O |= φ, if Mod(O) ⊆ Mod({φ}), that
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is, every model of O is a model of φ. φ is a contradiction if {φ} is inconsistent.
A contradiction has the form of ⊥(t) or > v ⊥. So conversely, a tautology has the
form of >(t), ⊥ v C, B v >, B v B or ⊥ v >.

In DL-Lite, there are some basic reasoning tasks. The consistency problem is
deciding whether an ontology is consistent or not. Two checking problems, namely,
instance checking (O |= C(a)) and subsumption checking (O |= B v C), can be
reduced to the consistency problem by the following lemma [8].

Lemma 1 (Reduction). Let O be an ontology. We have

• O |= B v C if and only if O ∪ {B(τ),¬C(τ)} is inconsistent where τ is a new
individual not occurring in O;

• O |= C(a) if and only if O ∪ {¬C(a)} is inconsistent.

At the end of this section, to specify the semantics, we enforce the unique name
assumption (UNA), that is, for any two individuals a, b and any interpretation I,
aI 6= bI . For instance, based on UNA, russell and wittgenstein are always treated
as two different persons (individuals).

2.2 Arguments

Let O be an ontology and φ an axiom. An argument for φ with respect to O is
a pair 〈Φ, φ〉 such that the following three axioms hold true:

• entailment : Φ |= φ;

• consistency : Φ is consistent;

• minimality : for any Φ′ ⊂ Φ, Φ′ 6|= φ.

If A = 〈Φ, φ〉 is an argument, then we call Φ the support of A and φ the
consequent of A. Sup(A) = Φ and Con(A) = φ. Let Arg(O, φ) denote the set of
all arguments for φ with respect to O. We will simply say “arguments” whenever it
is clear from the context in which ontology we work.

Intuitively, the first condition states that the support can entail the consequent;
the second shows that the support of an argument is a consistent sub-ontology; and
the last ensures that the support is minimal among all sub-ontologies which can
entail the consequent. In other words, the support of an argument for some axiom
is a minimal consistent sub-ontology which can entail this axiom (consequent).

Example 1 (Pet ontology). Let O = (T ,A) be an ontology where T = {Dog v
Pet ,Cat v Pet ,Pet v ∃hasOwner ,∃hasOwner− v Person,Cat v ¬Dog} and A =
{¬Person(p),Dog(d), hasOwner(d, p),Cat(c),¬∃hasOwner(c)} where Dog , Pet ,
Cat , Person are concepts, hasOwner a role and c, d, p individuals. The intended
meaning of O is as follows: a dog is a pet; a cat is a pet; a pet has a owner who is
a person; a cat is not a dog; d is a dog; d has a owner p; p is not a person; c is is
a cat; and c has not an owner.
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It is hard to show that O is inconsistent. hasOwner(d, p) and ∃hasOwner− v
Person imply Person(p) while ¬Person(p) is an axiom. Moreover, Cat(c), Cat v
Pet , Pet v ∃hasOwner imply ∃hasOwner(c) while ¬∃hasOwner(c) is an axiom.

Five arguments A1, A2, A3, A4 and A5 are constructed as follows:

1. A1 = 〈Φ1, φ1〉, where

Φ1 = (∅, {hasOwner(d, p)});
φ1 = ∃hasOwner(d).

Intuitively, if d has an owner p, then d has an owner.

2. A2 = 〈Φ2, φ2〉, where

Φ2 = ({Dog v Pet ,Pet v ∃hasOwner}, {Dog(d)});
φ2 = ∃hasOwner(d).

Intuitively, if d is a dog, each dog is a pet, and each pet has an owner, then
d has an owner.

3. A3 = 〈Φ3, φ3〉, where

Φ3 = ({∃hasOwner− v Person}, {hasOwner(d, p)});
φ3 = Person(p).

Intuitively, if d has an owner p and each owner is a person then p is also a person.

4. A4 = 〈Φ4, φ4〉, where

Φ4 = ({Cat v Pet ,Pet v ∃hasOwner}, {Cat(c))});
φ4 = ∃hasOwner(c).

Intuitively, if c is a cat, each cat is a pet and each pet has an owner then c has
an owner.

5. A5 = 〈Φ5, φ5〉, where

Φ5 = ({Dog v Pet ,Pet v ∃hasOwner}, ∅);
φ5 = Dog v ∃hasOwner .

Intuitively, if each dog is a pet and each pet has an owner then each dog has
an owner.

3 ATTACK GRAPHS OVER DL-LITE ONTOLOGIES

The BH’s framework [12] provides a tree-based dialogue mechanism, which can
ensure the termination of dialogue mechanisms, to deal with conflicts occurring in
knowledge.
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Formally, the BH’s framework F for some axiom φ over some ontology O is
a pair P , C where P and C are sets of argument trees for and against φ in O [12, 27].
Arguments are basic in constructing argument trees since each vertex in an argument
tree is an argument.

To search and generate arguments over ontologies, we need to discuss three kinds
of DL axioms, namely, concept inclusions “B v C”, role assertions “P (a, b)”, and
concept assertions “B(a)”.

Because for any role assertion P (a, b) (or P−(b, a)), the argument for it is
〈{P (a, b)}, P (a, b)〉 (or 〈{P (a, b)}, P−(b, a)〉), it is trivial to search arguments for
role assertions in DL-Litecore. In this paper, we mainly consider arguments for con-
cept assertions and concept inclusions. The problem of searching all arguments for
an axiom φ with respect to an ontology O is indeed computing their supports which
satisfy three properties: entailment, consistency, and minimality.

To address this issue, we will compute supports in four steps by gradually nar-
rowing our searching scope and finally generating arguments within this scope:

• introducing an edge-labeled connection graph called attack graph via resolution
rule where each vertex is an axiom and there exists an edge between two axioms
if and only if resolution rules can be applied over them;

• defining a kind of subgraphs called closed graphs of a connection graph where
each vertex has always an edge with other vertex in order to characterize entail-
ment relationship (discussed in Section 4.1);

• presenting a further kind of subgraphs called focal graphs of a closed graph by
removing redundant vertexes to characterize minimality and consistency. Then,
we will show that the support of each argument belongs to a focal graph (dis-
cussed in Section 4.1);

• selecting some paths called support paths in a focal graph by removing redundant
vertexes and edges. Finally, we will show that an argument can be exactly
generated for each support path (discussed in Section 4.2).

In this section, we will introduce attack graphs of DL-Lite ontologies where
each axiom is taken as a node. To define edges between nodes, we will introduce
resolution rules which are rules of inference leading to a refutation theorem-proving
technique for axioms [3]. In DL-Litecore, there are four kinds of resolution rules as
follows:

• rule-1:
C(x),¬C(x)

⊥(x)
or

C(x),¬C(a)

⊥(a)
;

• rule-2:
R(a, b),¬∃R(t)

⊥(a)
or

R(b, a),¬∃R−(t)

⊥(a)
;

• rule-3:
B(t), B v C

C(t)
or

¬C(t), B v C

¬B(t)
;
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• rule-4:
B1 v B2, B2 v C

B1 v C
or

B1 v ¬C,B2 v C

B1 v ¬B2

.

Resolution rules can be used to determine the inconsistency of an ontology in
the following Lemma [3].

Lemma 2 (Resolution). Let O be an ontology. O is inconsistent if and only if
a contradiction (in forms of ⊥(t), > v ⊥) is obtained by exhaustedly applying
resolution rules.

Lemma 2 states that an inconsistent ontology can finally bring a contradiction
via resolution rules.

By combining Lemma 1 and Lemma 2, we conclude the following results: for
every ontology O,

1. O |= B v C if and only if a contradiction in forms of ⊥(x), ⊥(τ) is obtained
from O ∪ {B(τ),¬C(τ)} by exhaustedly applying resolution rules;

2. O |= C(a) if and only if a contradiction in forms of ⊥(x), ⊥(a) is obtained from
O ∪ {¬C(a)} by exhaustedly applying resolution rules.

If two axioms φ, ψ meet the precondition of resolution rules, then we simply say
that the pair (φ, ψ) is resolutive. In other words, two axioms of a resolutive pair can
invoke one resolution rule. In this sense, if the pair (φ, ψ) is resolutive then there
exists the resolutive relation between φ and ψ.

Next, we investigate some common features of all resolutive pairs.

For instance, let T = {> v B,> v ¬B} be a TBox. Obviously, T is incon-
sistent, that is, there exists no model of T . In general, inconsistency is caused by
some conflicts.

Formally, a conflict is a set of {B(t),¬B(t)}. If the consistency of T is caused by
some conflicts {B(t),¬B(t)}, then we say T contains {B(x),¬B(x)}. For instance,
{> v B,> v ¬B} contains conflicts in form of {B(t),¬B(t)}.

Indeed, a DL-Litecore ontology contains conflicts in two forms as follows:

conflict-1: {A(t),¬A(t)}; conflict-2: {∃R(t),¬∃R(t)}.

Specially, {X(a),¬X(x)} and {X(x),¬X(a)} are still conflicts where X ∈ {A,∃R}.
However, {C(a),¬C(b)} is not a conflict. In other words, conflicts are related to
individuals. For instance, {C(x),¬C(x)} is a conflict. We use ID(φ) to return the
individual name occurring in a concept assertion φ. For convenience, we still denote
ID(X(x)) = x. For instance, ID(Dog(d)) = d and ID(Cat(c)) = c.

The precondition of an arbitrary resolution rule contains a conflict.

Proposition 1. Let φ and ψ be two axioms. The pair (φ, ψ) is resolutive if and
only if {φ, ψ} contains a conflict.
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Given an arbitrary pair (φ, ψ), it is not obvious to find all conflicts included in
{φ, ψ} since there are three kinds of axioms. For instance, the pair (P (a, b),∃P− v
C) is resolutive since {∃P−(b), ∃P−(x)} is a conflict.

Because a conflict is related to some basic concept assertions, we introduce two
functions: Γ(·) and Θ(·). The former is used to extract basic concept assertion from
both role assertions and concept inclusions; and the latter is used to return the
positive basic concept assertion of a conflict.

Firstly, we introduce a function Disjunct to beforehand transform both role
assertions and concept inclusions into concept assertions.

Let φ be an axiom. Disjunct(φ) is defined as follows:

• Disjunct(C(t)) = {C(t)};
• Disjunct(P (a, b)) = {∃P (a), ∃P−(b)};
• Disjunct(B v C) = {¬B(x), C(x)}.

Each member of Γ(φ) is called a base of φ. Note that each base is a basic concept
assertion. If a base is without ¬ then we call it a positive base.

Disjunct(φ) does not necessarily keep all models of {φ} but extracts those im-
plied concept assertions from it. For instance, Mod({P (a, b)}) 6= Mod({∃P (a),
∃P−(b)}).

Besides, Disjunct(φ) possibly contains some tautologies or contradictions with >
or ⊥. For instance, Disjunct(> v C) = {⊥(x), C(x)}, Γ(B v ⊥) = {¬B(x),⊥(x)}
and Disjunct(B v >) = {¬B(x),>(x)}. However, they do not support any useful
information in reasoning. To simplify our discussion, we will directly remove those
tautologies or contradictions in Disjunct(φ).

Γ(φ) is obtained from Disjunct(φ) by applying the following rules:

• if ⊥(t) ∈ Disjunct(φ), then we set Γ(φ) = Disjunct(φ)− {⊥(t)};
• if >(t) ∈ Disjunct(φ), then we set Γ(φ) = ∅.

Thus Γ(φ) contains neither a tautology nor a contradiction. For instance, Γ(> v
C) = {C(x)}, Γ(B v ⊥) = {¬B(x)}, Γ(B v >) = ∅.

Let S be a conflict. Θ(S) is defined as follows:

• Θ({X(a),¬X(x)}) = X(a);

• Θ({¬X(a), X(x)}) = X(a);

• Θ({X(x),¬X(x)}) = X(x).

Therefore we can obtain all positive bases from an arbitrary resolutive pair of
two axioms (which contains some conflicts) by using functions Γ and Θ.

Next, we introduce a function PreAttack to collect all positive bases of two
axioms which construct a resolutive pair.
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Definition 1 (PreAttack). Let φ and ψ be two axioms. The preattack of φ and ψ,
denoted by PreAttack(φ, ψ), is a set of basic concept assertions defined as follows:

PreAttack(φ, ψ) = {Θ({α,¬α}) | {α,¬α} is a conflict and α ∈ Γ(φ),¬α ∈ Γ(ψ)};

where α ∈ {A(t),∃R(t),¬A(t),¬∃R(t)}.

For instance, in Pet ontology (shown in Example 1),

1. PreAttack(Dog(d),Dog v Pet) = {Dog(d)};
2. PreAttack(Cat v Pet ,Pet v ∃hasOwner) = {Pet(x)};
3. PreAttack(¬Person(p),∃hasOwner− v Person) = {Person(p)};
4. PreAttack(hasOwner(d, p),∃hasOwner− v Person) = {∃hasOwner−(p)}.

PreAttack can indeed characterize all resolutive pairs of axioms.

Proposition 2. Let φ, ψ be two axioms. PreAttack(φ, ψ) 6= ∅ if and only if the
pair (φ, ψ) is resolutive.

Though PreAttack can characterize all resolutive pairs of axioms, some of them
are redundant to meet our aim. For instance, let φ1 = B1 v B2 and φ2 = B2 v B1 be
two concept inclusions. Thus PreAttack(φ1, φ2) = {B1(x), B2(x)}. After applying
resolution rule rule-4, we have

B1 v B2, B2 v B1

B1 v B1

.

However, B1 v B1 is a tautology. In other words, the resolution between φ1 and φ2

does not help in searching arguments.
We define a new function Attack to refine Preattack by removing those useless

pairs.

Definition 2 (Attack). Let φ and ψ be two axioms. The attack of φ and ψ, denoted
by Attack(φ, ψ), is defined as follows: if PreAttack(φ, ψ) = {α}, then Attack(φ, ψ) =
α; and otherwise Attack(φ, ψ) = null .

In short, PreAttack is defined for any pair of axioms φ, ψ while Attack is defined
for a pair of axioms φ, ψ for which |PreAttack(φ, ψ)| = 1.

In Definition 2, if PreAttack(φ, ψ) = {α} then either ψ or ¬ψ is a base of φ. We
say ψ (¬ψ) is attacked by ϕ if ψ (¬ψ) is a base of φ. In this sense, if Attack(φ, ψ) 6=
null then there exists the attack relation between φ and ψ. The attack relation
obeys a principle that there exists at most one base of φ (or ϕ) attacked by ϕ (or φ).
However, PreAttack does not necessarily obey this principle.

As discussed above, the attack relation between two axioms can exactly capture
their resolutive relation. Now, we are ready to define the attack graph of an ontology
via the attack relation.
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Definition 3 (Attack Graph). Let O = (T ,A) be an ontology. The attack graph
for O, denoted by AttackGraph(O), is a graph (V , E) where each axiom in O is
a vertex, that is, V = A ∪ T and each edge (φ, label, ϕ) ∈ E where label =
ID(Attack(φ, ϕ)) if Attack(φ, ϕ) 6= null for any φ, ϕ in O. We denote vertex (G) = V
and labels(G) = {label | (φ, label , ϕ) ∈ E}.

Intuitively, an attack graph is an undirected edge-labelled graph whose vertexes
are axioms and two vertexes connected by an edge if and only if they are resolutive.

Each edge has a unique label since each Attack(φ, ψ) is either a singleton or an
empty set. Besides, each edge has a label, either a named individual or individual
variable x. Given an attack graph G, vertex (G) is also taken as an ontology. For
instance, the attack graph AttackGraph(O) of Pet ontology is shown in Figure 1.

Cat v ¬Dog Cat(c) ¬Person(p)

Dog(d) Cat v Pet ∃hasOwner− v Person

Dog v Pet Pet v ∃hasOwner hasOwner(d, p)

¬∃hasOwner(c)

d

d

c

x

x

p

p

c

c

Figure 1. The attack graph of Pet ontology

The definitions of both path, connected attack graph, and connected component
are standard.

4 SEARCHING AND GENERATING ARGUMENTS
OVER ONTOLOGIES

In this section, we will introduce focal graphs within an attack graph to search all
arguments and we then define support paths within a focal graph to generate all
arguments for some axioms.

4.1 Searching Arguments Using Focal Graphs

In this subsection, we will introduce a focal graph in an attack graph to capture all
supports of all arguments for some axioms.
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Definition 4 (Closed vertex). Let G = (V , E) be an attack graph. We define
a closed vertex as follows:

• A vertex φ in form of P (a, b) is closed with respect to G if there is a vertex
ψ ∈ V such that Attack(φ, ψ) = ∃P (a) or Attack(φ, ψ) = ∃P−(b);

• a vertex φ in form of C(a) or B v C is closed with respect to G if for each base
ϕ ∈ Γ(φ) there is a vertex ψ ∈ V such that Attack(φ, ψ) = ϕ.

Intuitively speaking, each base of a closed vertex is attacked by other vertices.
For instance, both vertices Dog v Pet and Dog(d) are closed in the attack graph of
Pet ontology shown in Figure 1.

Definition 5 (Closed graph). Let O be an ontology. The closed graph of an on-
tology O, denoted by ClosedGraph(O), is the largest subgraph of AttackGraph(O)
whose each vertex is closed with respect to G.

The closed graph allows us to focus on the relevant part of the ontology for
constructing arguments.

For instance, in the Pet ontology O (shown in Example 1), let O∗ = O ∪
{Cat(d),Dog(c),¬∃hasOwner−(p),¬∃hasOwner(d)} be a sup-ontology of O. Then
ClosedGraph(O∗) is shown in Figure 2.

Cat v ¬Dog Cat(d)

Dog(d) Cat v Pet Cat(c)

Dog v Pet Pet v ∃hasOwner ¬∃hasOwner(d)

Dog(c) ¬∃hasOwner−(c) hasOwner(d, p)

¬Person(p) ∃hasOwner− v Person

d

d

d

x

c

d

x

c

p

d

d

c

p

Figure 2. The closed graph of O∗

Note that for an arbitrary closed graph G, vertex (G) is not necessarily inconsis-
tent. For instance, let T = {B1 v B2, B2 v B3, B3 v B4, B4 v B1} be a TBox; we
have vertex (ClosedGraph(T )) = T while T is consistent.
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Arguments for an axiom are often related with several individuals. Thus, we
only need to focus on some relevant labels (individuals) on a closed graph in order
to further narrow the scope of search arguments.

Definition 6 (Focal graph). Let O be an ontology and φ an axiom. The focal graph
of φ in O, denoted by FocalGraph(O, φ), if it satisfies

• it is a connected subgraph of ClosedGraph(O) containing vertex φ, that is, its
each vertex is connected to its any other vertex by a path;

• the label of each edge is either ID(φ) or x.

Intuitively, a focal graph is a closed subgraph, whose edges are labeled by either
“x” or a named individual.

For instance, in Pet ontology, the figure of FocalGraph(O∗,¬∃hasOwner(d))
is shown in Figure 3. The figure of FocalGraph(O∗,¬∃hasOwner−(c)) is shown
in Figure 4. Additionally, the figure of FocalGraph(O∗,¬Person(p)) is shown in
Figure 5.

Though a focal graph G possibly contains some role assertion R(a, b), for any
vertices φ, ψ in G, we have Attacks(φ,Γ(R(a, b))) = Attacks(ψ,Γ(R(a, b))).

Now, we collect vertices (axioms) on focal graphs.

Definition 7 (Zone). Let O be an ontology and φ an axiom. The zone of φ in O,
denoted by Zone(O, φ), is a set of axioms defined as follows:

• Zone(O, C(a)) = vertex (FocalGraph(O′, C(a))) where O′ = O ∪ {¬C(a)});
• Zone(O, B v C) = vertex (FocalGraph(O′′), B(τ)) ∪ vertex (FocalGraph(O′′),
¬C(τ)); where τ is a new individual not occurring in O and O′′ = O ∪ {B(τ),
¬C(τ)}.

For instance, in Pet ontology, we have

• from Figure 3, Zone(O∗,¬∃hasOwner(d)) = {Cat v ¬Dog ,Cat(d),Dog(d),
Cat v Pet ,Dog v Pet ,Pet v ∃hasOwner ,¬∃hasOwner(d), hasOwner(d, p)};
• from Figure 4, Zone(O∗,¬∃hasOwner(c)) = {Dog(c),Dog v Pet ,Pet v
∃hasOwner ,Cat v Pet ,Cat(c),¬∃hasOwner(c)};
• from Figure 5, Zone(O∗,¬Person(p)) = {∃hasOwner− v Person,

hasOwner(d, p)}.

The next result shows that zones contain exactly supports of all arguments.

Theorem 1. Let O be an ontology and φ an axiom. If 〈Φ, φ〉 is an argument for φ
with respect to O then Φ ⊆ Zone(O, φ). That is, for any A ∈ Arg(O, φ), we have
Sup(A) ⊆ Zone(O, φ).

Theorem 1 states that the zone of an axiom can characterize the scope of all
arguments for it.
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Cat v ¬Dog Cat(d)

Dog(d) Cat v Pet hasOwner(d, p)

Dog v Pet Pet v ∃hasOwner ¬∃hasOwner(d)

d

d

d

dx

d

d

x

Figure 3. The focal graph of ¬∃hasOwner(d)

Dog(c) Cat v Pet Cat(c)

Dog v Pet Pet v ∃hasOwner ¬∃hasOwner(c)

c

c

x

x c

Figure 4. The focal graph of ¬∃hasOwner(c)

4.2 Generating Arguments Using Support Paths

In this subsection, we will define support paths in a focal graph to generate all
arguments for some axioms.

Let O be an ontology and φ an axiom. A path π is a sequence of vertices
π = 〈φ1, . . . , φn〉 in FocalGraph(O, φ) such that Attacks(φi, φi+1) 6= null for any i
(1 ≤ i ≤ k − 1). We denote vertex (π) = {φ1, . . . , φn}, that is, a set of all vertices
occurring in π. In this sense, φi is the predecessor of φi+1 and φi+1 is the successor
of φi. We denote SubPath(φi) = 〈φi, . . . , φn〉.

For instance, in FocalGraph(O,¬∃hasOwner(d)) (shown in Figure 3), there are
three paths πi (i = 1, 2, 3) starting at ¬∃hasOwner(d) where

• π1 = 〈¬∃hasOwner(d),Pet v ∃hasOwner ,Cat v Pet ,Cat(d),Cat v ¬Dog ,
Dog(d)〉;
• π2 = 〈¬∃hasOwner(d),Pet v ∃hasOwner ,Dog v Pet ,Dog(d)〉;
• π3 = 〈¬∃hasOwner(d), hasOwner(d, p)〉.

¬Person(p) ∃hasOwner− v Person hasOwner(d, p)
p p

Figure 5. The focal graph of ¬Person(p)
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Definition 8 (Complete path). Let O be an ontology and φ an axiom. A path
is complete in FocalGraph(O, φ) if for any i (2 ≤ i ≤ k − 1), Attacks(φi−1, φi) 6=
Attacks(φi, φi+1).

For instance, π1 and π2 are complete.
Note that each concept assertion only occurs in two endpoints of a complete path.

For instance, the endpoints of both π1 and π2 are ¬∃hasOwner(d)) and Dog(d).
The idea in building a complete path π = 〈φ1, . . . , φn〉 is that in this way the

set of axioms produced vertex (π) such that at some step i, we have produced π =
〈φ1, . . . , φi〉, for any α ∈ Γ(φi)) \ Γ(φi−1) (Because φ1 is the endpoint of π, we have
|Γ(φ1)| = 1 and let α = φ1.) There is a node φi+1 in FocalGraph(O, φ) such that
¬α ∈ Γ(φi+1) and the set {φ1, . . . , φi, φi+1} ∪ {¬α} is inconsistent. Thereby, we can
ensure that {φ1, . . . , φi} |= α.

For instance, vertex (π1) \ {¬∃hasOwner(d)} |= ∃hasOwner(d) and vertex (π2) \
{Dog(d)} |= ¬Dog(d).

Note that if a path π contains some role assertion R(a, b), then there exists
exactly vertex φ connecting R(a, b) since either Attacks(ψ,R(a, b)) = {∃R(a)} for
any ψ holds or Attacks(ψ,R(a, b)) = {∃R−(b)} for any ψ holds.

For instance, a path 〈hasOwner(d, p),∃hasOwner− v Person,¬Person(p)〉 is
complete and Attacks(hasOwner(d, p), ∃hasOwner− v Person) = {∃hasOwner−(p)}
in FocalGraph(O,¬Person(p)) (shown in Figure 4).

Next, we will introduce two features of complete paths, namely, consistency and
minimality.

Definition 9 (Consistent path). LetO be an ontology and φ an axiom. A complete
path π is consistent in FocalGraph(O, φ) if for any vertices ψ and ϕ, if ψ′ is the
predecessor of ψ and ϕ′ is the predecessor of ϕ′, Attacks(ψ, ψ′) 6= Attacks(ϕ, ϕ′).

For instance, because Attacks(Cat v Pet ,Cat(d)) = Attacks(Cat(d),Cat v
¬Dog) = {Cat(d)}, π2 is consistent while π1 is not consistent.

Indeed, the consistency of complete paths can avoid the redundancy of edges.

Definition 10 (Minimal path). Let O be an ontology and φ an axiom. A complete
path π is minimal in FocalGraph(O, φ) if there exists no any complete path π′ in
FocalGraph(O, φ) such that vertex (π′) ⊂ vertex (π).

Indeed, the minimality of complete paths can avoid the redundancy of vertices.
For instance, π2 is minimal while π1 is not minimal since there exists a path π4 =

〈¬∃hasOwner(d1)),Pet v ∃hasOwner ,Cat v Pet ,Cat(d)〉 such that vertex (π4) ⊂
vertex (π1) and π4 is complete and consistent.

Now, we are ready to introduce support paths for some concept assertions.

Definition 11 (Support path). Let O be an ontology and φ an axiom. A sup-
port path π for φ with respect to O is a complete path containing a vertex φ in
FocalGraph(O, φ) that is minimal and consistent.
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For instance, π2 and π4 are support paths for ¬∃hasOwner(d)) with respect
to O.

Let π be a support path. For any u ∈ vertex (π), we denote

LiteralsRes(ψ) = Literals(ψ) \ {Attacks(ϕ, ϕ′) | ϕ, ϕ′ ∈ SubtPath(ψ))};

where
Literals(ψ) =

⋃
ϕ∈SubPath(ψ)

Γ(ϕ).

Theorem 2. Let O be an ontology and C(a) a concept assertion. If π is a complete
support path for ¬C(a) with respect to O, then 〈Φ, C(a)〉 with Φ = vertex (π) \
{¬C(a)} is an argument.

For instance, let Φ2 = vertex (π2) \ {¬∃hasOwner(d)} and Φ1 = vertex (π3) \
{¬∃hasOwner(d)}; it obviously concludes that 〈Φ2,∃hasOwner(d)〉 and 〈Φ1,
∃hasOwner(d)〉 are arguments for ∃hasOwner(d) with respect to O.

Analogously, we find that 〈¬∃hasOwner(c), P et v ∃hasOwner ,Cat v Pet ,
Cat(c)〉 is a support path for ¬∃hasOwner(c) in Figure 4 and 〈hasOwner(d, p),
∃hasOwner− v Person,¬Person(p)〉 is a support path for Person(p) in Figure 5.
We exactly generate arguments A3 and A4 in Example 1.

Next, we consider how to generate argument for concept inclusion by using sup-
port paths. Note that the support of an argument for a concept inclusion is a subset
of a TBox. In the following, we mainly consider TBoxes instead of ontologies.

Theorem 3. Let T be a TBox and C v D a concept inclusion. Let O = (T ,A)
where A = {C(τ),¬D(τ)} where τ is a new individual name. If π is either a support
path for C(τ) with respect to O or a support path for ¬D(τ) with respect to O then
〈Φ, C v D〉 with Φ = vertex (π) \ {C(τ),¬D(τ)} is an argument.

For instance, let O′ = (T , {Dog(τ),¬∃hasOwner(τ)}) be an ontology. The focal
graph FocalGraph(O,Dog(τ)) is shown in Figure 6. There exists a complete support
path 〈Dog(τ),Dog v Pet ,Pet v ∃hasOwner ,¬∃hasOwner(τ)〉. Thus the argument
for Dog v ∃hasOwner is 〈({Dog v Pet , Pet v ∃hasOwner}, ∅), Dog v ∃hasOwner〉,
i.e., A5.

Dog(τ) Dog v Pet Pet v ∃hasOwner ¬∃hasOwner(τ)
τ x τ

Figure 6. The focal graph of Dog(τ)

In the rest of this section, we discuss the computational complexity of generating
arguments over DL-Litecore ontologies.

Given an ontology O in DL-Litecore, if we assume that |O| = n and for any
two axioms φ, ψ, the computational time of PreAttack(φ, ψ) is 1, then the time of
constructing AttackGraph(O) is 4n2, the time of constructing ClosedGraph(O) is
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8n2 and the time of constructing FocalGraph(O, φ) some axiom φ in O is 8n2 + 4n4

respectively. In other words, AttackGraph(O), ClosedGraph(O) can be constructed
in O(n2) and FocalGraph(O, φ) can be constructed in O(n4).

In short, the attack graph and focal graph are polynomial to the size of the
ontology. Moreover, the focal graph contains at most n nodes and n2 edges. The
satisfiability problem for DL-Litecore is in polynomial time [1], which is the same as
the satisfiability problem of propositional logic. In propositional logic, the problem
of generating arguments is in the second level of the polynomial hierarchy where
the problem is considered as the abduction problem [23]. Thus the complexity of
generating support paths is not higher than the complexity of that in propositional
revision. Therefore, the complexity of our approach to constructing focal graphs
and generating arguments over DL-Litecore ontologies is in the second level of the
polynomial hierarchy.

5 EXAMPLE: A PRACTICAL ONTOLOGY

In this section, we apply the proposal approach to discuss a practical ontology,
so-called buggyPolicy ontology ([2]), whose incoherency is caused by over-defining.

The buggyPolicy ontology can be equivalently written as a DL-Litecore ontology
which contains 22 axioms ψi as follows:

ψ1 : ExactlyOneExamplePolicy v Policy ;
ψ2 : GeneralReliabilityKerberosPolicy v Policy ;
ψ3 : GeneralReliabilityUserPolicy v Reliable;
ψ4 : GeneralReliabilityUserPolicy v UserToken;
ψ5 : GeneralReliabilityUserPolicy v Policy ;
ψ6 : GeneralReliabilityUserPolicy v ¬Messaging ;
ψ7 : X509 v SecurityTokenType;
ψ8 : IncoherentPolicy v Policy ;
ψ9 : Kerberos v SecurityTokenType;
ψ10 : Kerberos v ¬Messaging ;
ψ11 : Reliable v Messaging ;
ψ12 : RetryOnFailureUserPolicy v Policy ;
ψ13 : RetryUntilSucceedUserPolicy v Policy ;
ψ14 : RetryOnFailure v Reliable;
ψ15 : RetryUntilSucceed v Reliable;
ψ16 : UserToken v SecurityTokenType;
ψ17 : RetryOnFailureUserPolicy v RetryOnFailure;
ψ18 : RetryOnFailureUserPolicy v UserToken;
ψ19 : RetryUntilSucceedUserPolicy v UserToken;
ψ20 : RetryUntilSucceedUserPolicy v RetryUntilSucceed ;
ψ21 : IncoherentPolicy v RetryOnFailureUserPolicy ;
ψ22 : IncoherentPolicy v RetryUntilSucceedUserPolicy .
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Note that {ψ3, ψ11} implies GeneralReliabilityUserPolicy v Messaging , which
conflicts with ψ6. Thus GeneralReliabilityUserPolicy is unsatisfiable.

Now, we add two axioms ψ23 = GeneralReliabilityUserPolicy(id) and ψ24 =
IncoherentPolicy(id), where id is an individual, and then we obtain a new ontology
Op which is inconsistent because Messaging(id) and ¬Messaging(id) conflict with
each other. The attack graph of Op is shown in Figure 7.

ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

ψ23

ψ8

ψ9

ψ10

ψ11

ψ12

ψ13

ψ14

ψ15

ψ24

ψ16

ψ17

ψ18

ψ19

ψ20

ψ21

ψ22

id

x

id

x

id

x

id

id

x
x

x

x

x

x

id

id

x

x

x

x

x

Figure 7. The attack graph of Op

Next, we will apply the proposal approach to generating all arguments for four
following axioms in Op:

α1 : Messaging(id); α2 : Reliable(id);
α3 : Policy(id); α4 : RetryUntilSucceed(id).

Firstly, let Oip = Op ∪ {¬αi} (i = 1, 2, 3, 4).

• The focal graph of ¬Messaging(id) in O1
p is shown in Figure 8. There exist

two complete support paths π11 = 〈¬α1, ψ11, ψ3, ψ23〉, π12 = 〈¬α1, ψ11, ψ6, ψ23〉.
Thus, there exist two arguments for α1, 〈({ψ11, ψ3}, {ψ23}), α1〉 and 〈({ψ11, ψ6},
{ψ23}), α1〉.
• The focal graph of ¬Reliable(id) in O2

p is shown in Figure 9. There exists
a complete support path π21 = 〈¬α2, ψ3, ψ23〉. Thus, there exists an argument
for α2, 〈({ψ3}, {ψ23}), α2〉.
• The focal graph of ¬Policy(id) in O3

p is shown in Figure 10. There exist
three complete support paths π31 = 〈¬α2, ψ5, ψ23〉, π32 = 〈¬α2, ψ8, ψ24〉, π33 =
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¬α1 ψ11

ψ6

ψ3

ψ23

id

x

x

x

x

Figure 8. The focal graph of ¬Messaging(id) in O1
p

¬α2 ψ3

ψ11

ψ23

ψ6

id

x

id

x

id

Figure 9. The focal graph of ¬Reliable(id) in O2
p

〈¬α2, ψ13, ψ22, ψ24〉. Thus, there exist three arguments for α3, 〈({ψ5}, {ψ23}),
α3〉, 〈({ψ8}, {ψ24}), α3〉 and 〈({ψ13, ψ22}, {ψ24}), α3〉.

ψ5 ¬α3

ψ23 ψ13 ψ22 ψ24

ψ8
id

x

id id

id

id

id

Figure 10. The focal graph of ¬Policy(id) in O3
p

• The focal graph of ¬RetryUntilSucceed(id) in O4
p is shown in Figure 11. There

exists a complete support path π41 = 〈¬α4, ψ20, ψ22, ψ24〉. Thus there exists
an argument for α4, 〈({ψ20, ψ22}, {ψ24}), α4〉.

Based on this example, we conclude that the approach proposed in this paper
is feasible in generating all arguments over practical ontologies.

6 DISCUSSION

Argumentation is the interdisciplinary study of how conclusions can be reached
through logical reasoning [13]. One important application of argumentation is rea-
soning with knowledge bases containing some conflicts. Recently, there are some
proposals for logic-based argumentation in reasoning with inconsistent DL ontolo-
gies [4, 14, 27, 6, 15, 28]. The common idea behind of them is employing some
dialogue mechanisms to judge which of the knowledge causing inconsistency is true
such as [14, 6, 15] based on Dung’s graph-based dialogue [13] and [27, 28] based
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¬α4 ψ20 ψ22 ψ24
id x id

Figure 11. The focal graph of ¬RetryUntilSucceed(id) in O4
p

on Besnard and Hunter’s tree-based dialogue mechanism [12]. However, for argu-
mentation, it is computationally challenging to generate arguments from ontologies.
Indeed, generating arguments for propositional axioms is seeking the existence of
a minimal subset of a set of propositional axioms that implies the consequent. In
other words, this problem can be considered as abduction problem which is in the
second level of the polynomial hierarchy [19]. As mentioned in [23], the difficult
nature of argumentation has been underlined by studies concerning the complexity
of finding individual arguments [16]. Efstathiou and Hunter successfully developed
an approach to searching arguments by using connection graphs [21] and generating
arguments [23] by using support trees for propositional axioms.

In this paper, inspiring from the approach proposed by Efstathiou and Hunter,
we have presented an approach, which bring no higher complexity than that of the
EH’s approach to generating arguments for propositional axioms, to search and ge-
nerate arguments for DL axioms over DL-Lite ontologies. Compared with Efstathiou
and Hunter’s method, our approach has the following improvements:

• we define attack graph as an edge-labeled connection graph whose labels can
characterize individuals and edges can characterize three kinds of axioms (con-
cept inclusions, concept assertions and role assertions) by refining resolutive
conditions;

• we refine the closed condition so that role assertions can be characterized and
restrict focal graphs by its labels so that the searching scope of arguments can
be accurate;

• we present support paths and the completeness of support paths to characterize
the support sets of arguments instead of support trees in [23] so that we can
precisely generate arguments over DL-Lite ontologies.

Note that our proposal approach is based on the condition that an ontology
can be embedded into a graph where axioms are taken as nodes and the resolutive
relation between axioms is taken as a set of edges between them. However, unlike
DL-Lite, the resolutive relation between axioms in expressive DLs such as ALC is
not apparently characterized by their syntactical structures. There will be some
challenges to adapt our proposal approach to generate arguments over expressive
DL ontologies. In future work, we will improve our proposal approach for expressive
DLs. Besides, we will consider to implement a system based on JArgue for propo-
sitional axioms implemented by [22], which is not an open source so far, as a future
work.



944 X. Zhang, Z. Lin

Acknowledgments

We would like to thank the anonymous referees for their critical comments which
helped us to improve the paper. Xiaowang Zhang is funded by the project of Re-
search Foundation Flanders under grant G. 0489.10N and Zuoquan Lin is funded by
the program of the National Natural Science Foundation of China (NSFC) under
grant 60973003.

A APPENDIX: PROOFS

Proposition 1. Let φ and ψ be two axioms. The pair (φ, ψ) is resolutive if and
only if {φ, ψ} contains a conflict.

Proof. Firstly, we prove the “if” direction. By the definition of resolution rules, the
preconditions of rule-1, rule-3 and rule-4 contain conflicts in form of {A(t),¬A(t)}
and the precondition rule-2 contains conflicts in form of {∃R(t),¬∃R(t)}.

We then prove the “only if” direction. By the definition of conflicts in two forms
of: {A(t),¬A(t)} and {∃R(t),¬∃R(t)}. If {φ, ψ} contains conflict {A(t),¬A(t)}
then it meets the preconditions of rule-1, rule-3 and rule-4. If {φ, ψ} contains
conflict {∃R(t),¬∃R(t)} then it meets the precondition of rule-2. That is, {φ, ψ}
can use one of resolution rules. Therefore, {φ, ψ} is resolutive. 2

Proposition 2. Let φ, ψ be two axioms. PreAttack(φ, ψ) 6= ∅ if and only if the
pair (φ, ψ) is resolutive.

Proof. Firstly, we prove the “if” direction. if the pair (φ, ψ) is resolutive then they
contain a conflict {α,¬α} and α ∈ Γ(φ), ¬α ∈ Γ(ψ) by Proposition 1. Thus either
α ∈ PreAttack(φ, ψ) or ¬α ∈ PreAttack(φ, ψ). We conclude that PreAttack(φ, ψ) 6=
∅. We then prove the “only if” direction. If PreAttack(φ, ψ) 6= ∅ then, without loss
of generality, there exists a conflict {α,¬α} and α ∈ Γ(φ), ¬α ∈ Γ(ψ). Thus the
pair (φ, ψ) is resolutive by Proposition 1. 2

Theorem 1. Let O be an ontology and φ an axiom. If 〈Φ, φ〉 is an argument for φ
with respect to O then Φ ⊆ Zone(O, φ). That is, for any A ∈ Arg(O, φ), we have
Sup(A) ⊆ Zone(O, φ).

Proof. Let A = 〈Φ, φ〉 ∈ Arg(O, φ). Φ |= φ and Φ is consistent. We consider three
cases of φ as follows:

• if φ = C(a), then Φ∪{¬C(a)} is inconsistent. Then a contradiction is obtained
by exhaustedly applying resolution rules by Lemma 2. We need to show that
vertex (FocalGraph(Φ ∪ {¬C(a)})) = Φ ∪ {¬C(a)} in two steps by Definition 7:

– We need to show vertex (ClosedGraph(Φ ∪ {¬C(a)})) = Φ ∪ {¬C(a)}, that
is, for any vertex ψ, each base ϕ ∈ Γ(ψ) is attacked by Definition 2. Assume
that vertex (ClosedGraph(Φ∪{¬C(a)})) 6= Φ∪{¬C(a)}, that is, there exists
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a vertex ψ′AttackGraph(Φ ∪ {¬C(a)}) such that a base ϕ′ ∈ Γ(ψ′) can not
be attacked. Then ϕ′ is retained after exhaustedly applying resolution rules.
It contradicts with Lemma 2.

– We need to show ClosedGraph(Φ ∪ {¬C(a)}) = FocalGraph(Φ ∪ {¬C(a)}),
that is, each edge on ClosedGraph(Φ ∪ {¬C(a)}) has two labels x and a.
Because Γ(P (a, b)) = {∃P (a),∃P−(b)}, if ∃P (a) is attacked then P (a, b)
is FocalGraph(Φ ∪ {¬C(a)}). Each edge has either label x or label a on
ClosedGraph(Φ ∪ {¬C(a)}).

• if φ = P (a, b) or P−(b, a), then Φ = {P (a, b)}. Then P (a, b) ∈ Zone(O, φ) by
Definition 7.

• if φ = B v C, then Φ ∪ {B(τ),¬C(τ)} is inconsistent by Lemma 1 and Φ
only contains concept inclusions. In AttackGraph(Φ ∪ {B(τ),¬C(τ)}), each
edge has either label x or label τ . Similar to the proof (1), for any vertex
ψ ∈ Φ∪{B(τ),¬C(τ)}, each base ϕ ∈ Γ(ψ) is attacked since Φ∪{B(τ),¬C(τ)}
is inconsistent by Lemma 2. We can conclude that vertex (ClosedGraph(Φ ∪
{B(τ),¬C(τ)})) ⊆ vertex (FocalGraph(Φ ∪ {B(τ),¬C(τ)}, B(τ))) ∪ vertex
(FocalGraph(Φ ∪ {B(τ),¬C(τ)},¬C(τ))).

Therefore, we can conclude that Φ ⊆ Zone(O, φ). 2

Theorem 2. Let O be an ontology and C(a) a concept assertion. If π is a complete
support path for ¬C(a) with respect to O, then 〈Φ, C(a)〉 with Φ = vertex (π) \
{¬C(a)} is an argument.

Proof. Because, in FocalGraph(O∪{¬C(a)},¬C(a)), π is a complete support path
for C(a) with respect to O, ¬C(a) must occur in the endpoint of π since Γ(¬C(a))
is a singleton, that is, there exists at most one edge in π. Without loss of generality
assume that π = 〈¬C(a), φ1, . . . , φn〉. That is, φ1 be the successor of ¬C(a). Then
Φ = vertex (π) \ {¬C(a)}.

• Φ |= C(a). Let π−1 = 〈φn, . . . , φ1,¬C(a)〉. Because π is a complete path, we
conclude that π−1 is a complete path by Definition 8. In π−1, the vertex ¬C(a)
can be added behind of the path 〈φn, . . . , φ1〉. Based on the way of building
complete paths, {φn, . . . , φ1} ∪ {¬C(a)} is inconsistent. Thus {φn, . . . , φ1} |=
C(a). Therefore, Φ |= C(a) since Φ = {φ1, . . . , φn}.
• Φ is consistent. Assume that Φ is inconsistent. Then we have LiteralsRes(φ1) =
∅. Thus there exist some vertices φi, φj such that Attacks(φi, φj) = ¬C(a) which
contradicts the fact that π is consistent by Definition 9.

• There exists no Φ′ ⊂ Φ such that Φ |= C(a). Assume that there exists some
Φ′ ⊂ Φ such that Φ′ |= C(a). Without loss of generality assume Φ′ is minimal for
entailing C(a). Thus there exists a support path π′ such that Φ′ = vertex (π′) \
{¬C(a)} by Definition 10. It is not hard to show that π′ is a complete path
by Definition 8. Then, by Definition 11, π does not satisfy the definition for



946 X. Zhang, Z. Lin

a minimal complete path which contradicts the precondition that π is a support
path.

2

Theorem 3. Let T be a TBox and C v D a concept inclusion. Let O = (T ,A)
where A = {C(τ),¬D(τ)} where τ is a new individual name. If π is either a support
path for C(τ) with respect to O or a support path for ¬D(τ) with respect to O then
〈Φ, C v D〉 with Φ = vertex (π) \ {C(τ),¬D(τ)} is an argument.

Proof. We will prove this theorem in three cases of π:

• π is a support path for C(τ) but not a support path for ¬D(τ) with respect to O.
C(τ) must be one of endpoints of π. By Theorem 2, 〈Φ,¬C(τ)〉 is an argument.
Thus Φ |= ¬C(τ). Because Φ ⊆ T , that is, a set of some concept inclusions,
Φ |= C v ⊥. Then Φ |= C v D.

• π is a support path for ¬D(τ) but not a support path for C(τ) with respect to O.
¬D(τ) must be one of endpoints of π. By Theorem 2, 〈Φ, D(τ)〉 is an argument.
Thus Φ |= D(τ). Because Φ ⊆ T , that is, a set of some concept inclusions,
Φ |= > v D. Then Φ |= C v D.

• π is a support path for both C(τ) and ¬D(τ) with respect to O. C(τ),¬D(τ)
must be exactly two endpoints of π. By Theorem 2, 〈Φ,¬C(τ)〉 and 〈Φ, D(τ)〉
are two arguments. Thus Φ |= ¬C t D(τ). By the selection of τ , we conclude
that for any individual name x, we have Φ |= ¬CtD(x) since Φ ⊆ T . Therefore,
we conclude that Φ |= C v D.

2
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