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Abstract. Systems composed of several interacting autonomous agents have a huge
potential to efficiently address complex real-world problems. Usually agents com-
municate by directly exchanging information and knowledge about the environ-
ment. The aim of the paper is to develop a new computational model that endows
agents with a supplementary interaction/search mechanism of stigmergic nature.
Multi-agent systems can therefore become powerful techniques for addressing NP-
hard combinatorial optimization problems. In the proposed approach, agents are
able to indirectly communicate by producing and being influenced by pheromone
trails. Each stigmergic agent is characterized by a certain level of sensitivity to the
pheromone trails. The non-uniform pheromone sensitivity allows various types of
reactions to a changing environment. For efficient search diversification and intensi-
fication, agents can learn to modify their sensitivity level according to environment
characteristics and previous experience. The resulting system for solving complex
problems is called Learning Sensitive Agent System (LSAS). The proposed LSAS
model is used for solving several NP-hard problems such as the Asymmetric and
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Generalized Traveling Salesman Problems. Numerical experiments indicate the ro-
bustness and the potential of the new metaheuristic.

Keywords: Stigmergy, agents, ant colony systems, combinatorial optimization,
learning
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1 INTRODUCTION

Many optimization problems are NP-hard and therefore cannot be solved within
polynomial computation times. NP-hard problems arise in many and diverse do-
mains including network design, scheduling, mathematical programming, algebra,
games, language theory and program optimization. Metaheuristics are powerful
strategies to efficiently find high-quality near optimal solutions within reasonable
running time for problems of realistic size and complexity.

A metaheuristic combining stigmergic behaviour and agent direct communica-
tion called Learning Sensitive Agent System (LSAS) is proposed. The LSAS model
involves several two-way interacting agents [3, 5] endowed with learning capabilities
that allows them to explore the search space more efficiently. LSAS agents can
communicate by directly exchanging messages using an Agent Communication Lan-
guage [13, 14, 16, 19]. The information directly obtained from other agents is very
important in the search process and can become critical in a dynamic environment
(where the latest changes in the environment can be instantly made available to
other agents).

The LSAS model is engaged in solving various instances of the Asymmetric and
Generalized Traveling Salesman Problems. Numerical results indicate a competitive
performance of the proposed system compared to related state-of-the-art methods.

The paper is organized as follows: the idea of stigmergy is described and the
Ant Colony Optimization metaheuristic is shortly presented; the notions of agent
and multi-agent system are introduced with a focus on agent communication; the
LSAS model is presented describing the communication mechanisms (direct and
stigmergic) of agents, the concept of pheromone sensitivity for stigmergic agents
and the learning mechanism engaged in the model; the LSAS numerical results and
comparisons with other methods are presented; the conclusions of the paper and
directions for future research are given.

2 STIGMERGY. ANT COLONY OPTIMIZATION

Metaheuristics inspired from nature represent a powerful and robust approach to
solve NP-difficult problems. Biology studies emphasize the remarkable solutions
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that many species managed to develop after millions of years of evolution. Self-
organization [1] and indirect interactions between individuals make possible the iden-
tification of intelligent solutions to complex problems. These indirect interactions
occur when one individual modifies the environment and other individuals respond
to the change at a later time. This process refers to the idea of stigmergy [10].

The bio-inspired Ant Colony Optimization (ACO) model [6, 7] simulates real
ant behavior to find the minimum length path between the ant nest and the food
source. An ant algorithm is essentially a system based on agents that simulate the
natural behavior of ants including mechanisms of cooperation and adaptation. This
approach induces the development of a new metaheuristic that has been successfully
used to solve combinatorial optimization problems.

Ant algorithms are based on the following main ideas:

e Fach path followed by an ant is associated with a candidate solution for a given
problem.

e When an ant follows a path, the amount of pheromone deposited on that path
is proportional to the quality of the corresponding candidate solution for the
target problem.

e When an ant has to choose between two or more paths, the path(s) with a larger
amount of pheromone has(have) a greater probability of being chosen. As a re-
sult, ants eventually converge to a short path which hopefully represents the
optimum or a near-optimum solution for the target problem.

Well known and robust algorithms include Ant Colony System [6, 9] and MAX-MIN
Ant System [17].

3 COMMUNICATION. AGENTS AND MULTI-AGENT SYSTEMS

Autonomous agents have been the focus of researchers and developers from disci-
plines such as Al, object-oriented programming, concurrent object-based systems
and human-computer interface design [3, 16]. Although there is no universally ac-
cepted agent definition, researchers and scientists generally agree that an agent acts
on behalf of its user, is situated in an environment and is able to perceive that
environment, has a set of objectives and takes actions so as to accomplish these ob-
jectives and is autonomous [3]. The main properties of an agent can be summarised
as follows [2, 3, 13, 14, 16, 18]:

Autonomy: The ability to operate on its own without the intervention of humans
or other systems.

Reactivity: The ability to perceive its environment and to respond to changes that
occur in it.

Pro-activeness: The ability to take the initiative in order to pursue its individual
goals (goal-directed behaviour).



340 C. Chira, D. Dumitrescu, C.-M. Pintea

Cooperation (or social ability) The capability of interacting with other agents
and possibly humans via an agent-communication language. Involves the ability
of an agent to dynamically negotiate and coordinate.

Learning: The ability to learn while acting and reacting in its environment. Learn-
ing can increase performance of an agent over time.

Mobility: The ability to move around a network in a self-directed way.

Furthermore, some researchers identify more properties associated with the notion
of agency including temporal continuity, personality, veracity, benevolence and ra-
tionality.

Characterized by computational efficiency, reliability, extensibility, robustness,
maintainability, responsiveness, flexibility and reuse, multi-agent systems (MAS)
promote conceptual clarity and simplicity of design [2, 3]. A multi-agent approach
to developing complex systems involves the employment of several agents capable
of interacting with each other to achieve objectives [13]. The benefits of such an
approach include the ability to solve large and complex problems, interconnection
and interoperation of multiple existing legacy systems and the capability to handle
domains in which the expertise is distributed [2, 3, 19].

Interoperation among autonomous agents of MAS is essential for the successful
identification of a solution to a given problem. Agent-oriented interactions span
from simple information interchanges to planning of interdependent activities for
which cooperation, coordination and negotiation are fundamental.

Coordination is necessary in MAS because agents have different and limited
capabilities and expertise. Agents have to coordinate their activities in order to
determine the organizational structure in a group of agents and to allocate tasks and
resources. Furthermore, interdependent activities require coordination (the action
of one agent might depend on the completion of a task for which another agent is
responsible).

Negotiation is essential within MAS for conflict resolution and can be regarded
as a significant aspect of the coordination process among autonomous agents [2, 15].

Agents need to communicate in order to exchange information and knowledge or
to request the performance of a task as they only have a partial view over their en-
vironment [2]. Considering the complexity of the information resources exchanged,
agents should communicate through an agent communication language (ACL). Stan-
dard ACLs designed to support interactions among intelligent software agents in-
clude the Knowledge Query and Manipulation Language (KQML) proposed by the
Knowledge Sharing Effort consortium [8] and FIPA ACL defined by the FIPA or-
ganization [11]. Both KQML and FIPA ACLs are designed to be independent of
particular application vocabularies.

4 DIRECT AND STIGMERGIC INTERACTIONS

The proposed Learning Sensitive Agent System (LSAS) combines stigmergic be-
haviour and agent direct communication. The LSAS model involves several two-way
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interacting agents [4, 5]. Agents are endowed with stigmergic behaviour similar to
that of Ant Colony Systems [6, 7]. This means that each agent is able to produce
pheromone trails that can influence future decisions of other agents. LSAS agents
are characterized by a certain level of sensitivity to the pheromone trail allowing
various types of reactions to a changing environment [5]. Furthermore, LSAS agents
are endowed with learning capabilities that allow them to explore the search space
more efficiently.

4.1 Direct Communication in LSAS

LSAS agents are able to exchange different types of messages in order to share direct
knowledge and support interoperation. The content of the messages exchanged
refers to environment characteristics and partial solutions obtained. The information
about dynamic changes in the environment is of significant importance in the search
process. The content of the messages exchanged depends highly on the problem
being solved.

Furthermore, the LSAS model inherits agent properties such as autonomy, reac-
tivity, learning, mobility and pro-activeness used in multi-agent systems. The agents
that form the system have the ability to operate without human intervention, can
cooperate to exchange information and can learn while acting and reacting in their
environment. The learning mechanism used in the proposed model is detailed in
Section 5.

4.2 Stigmergic Communication in LSAS

LSAS agents are endowed with the ability to produce pheromone trails that can
influence future decisions of other agents within the system. The stigmergic be-
haviour of the LSAS agents is similar to that of the ants in the bio-inspired Ant
Colony Optimization metaheuristic [6, 7, 9].

Let us consider that agents solve problems by finding a path from an intial state
to a final state. Each state in the search space is represented by a node in a graph
and a transition rule has to be specified.

If an agent is sensitive to stigmergic information, stronger pheromone trails
are preferred and the most promising paths receive a greater pheromone trail after
some time. The result of the algorithm is a sequence of states — corresponding to
the optimal (or a near-optimal) solution of the given problem.

Let £ be a parameter used for tunning the relative importance of edge length in
selecting the next node. Let us denote by J¥; the unvisited successors of node i by
agent k and u € J*;. ¢ is a random variable uniformly distributed over [0, 1] and o
is a parameter similar to the temperature in simulated annealing, 0 < gy < 1.
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If ¢ > qo the probability p;, of choosing j = w as the next node from the current
node i is defined as [6, 7]:

[7ia ()] [0 (1)]°
Yoe s, [Tio ()] [1i0(£)]? ’

(1)

Piu(t) =

where

o 7;,(t) refers to the pheromone trail intensity on edge (4, u) at time ¢, and

e 1;,(t) represents the visibility of edge (i, u).

If ¢ < go the next node j is chosen according to the following rule [6, 7]:
j = argmaz e e {m(t) 0:(8))}. (2)
4.3 Pheromone Sensitivity

Within the LSAS model each agent is characterized by a pheromone sensitivity
level denoted by PSL which is expressed by a real number in the unit interval [0, 1].
Extreme situations are:

e If PSL = 0 the agent completely ignores stigmergic information (the agent is
‘pheromone blind’);

e If PSL =1 the agent has maximum pheromone sensitivity.

Low PSL values (below a specified threshold a, which is a parameter of the algo-
rithm) indicate that the agent tends to make decisions based on information received
from other agents. Unpromising states in a list generated by direct communication
are avoided in random decision making. However, if stigmergic infomation is con-
sidered in the decision making process, only very high pheromone marked moves
will be considered (as the agent has reduced pheromone sensitivity). These agents
are more independent and can be considered as environment explorers. They have
the potential to autonomously discover new promising regions of the solution space.
Therefore, search diversification can be sustained.

Agents with high PSL values (PSL > a) can choose any pheromone marked
move. Agents of this category are able to intensively exploit the promising search
regions already identified. In this case the agent’s behaviour emphasizes search
intensification.

The role of the pheromone sensitivity index is twofold. On one hand, an agent
discriminates between direct and stigmergic interaction based on its PSL value. On
the other hand, in the case of stigmergic behavior the agent’s PSL influences the
state transition mechanism. The LSAS specific transition mechanism is described
in Section 5.

The PSL value for each agent in the proposed model is of major importance.
There is no universal mechanism for setting an efficient value for this parameter for
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each agent in the system. A natural idea is to update the PSL by using a learning
procedure.

5 THE LEARNING SENSITIVE AGENT SYSTEM MODEL

This section further specifies the LSAS model by defining the renormalized transition
probabilities and the learning rules used by agents. Furthermore, the corresponding
algorithm for the LSAS model is described.

5.1 Renormalized Transition Probabilities in LSAS

LSAS agents that decide to use stigmergic information (pheromone trails) in choos-
ing the path use transition probabilities similar to those described above but strongly
influenced by the PSL value.

A measure of randomness proportional to the level of PSL is introduced in
the decision process. It is proposed to achieve this by modifying the transition
probabilities using the PSL values in a renormalization process. Consider p;, (A, )
as the probability for agent A of choosing the next node u from current node 4 (as
given in (1) above).

Let us denote by sp;.(A,t) the renormalized transition probability for agent A
(influenced by PSL) used in the LSAS model. In the proposed LSAS approach
renormalization is accomplished via the following equation:

Spm(A, t) = piu(A> t)PSL(A7 t): (3)

where PSL(A, t) represents the PSL value of agent A at time ¢.
It should be noted that if
PSL(A,t) #1 (4)

then for each node ¢ we have

> spiu(At) < 1. (5)

u

In order to associate a standard probability distribution to the system, a virtual
state denoted by ws — corresponding to the ‘lost’ probability — is introduced.
The transition probability associated to the virtual state vs is defined as

Spi,vs(A7 t) =1- Z Spiu(A7 t) (6)

u

Therefore, for agent k at moment ¢ we may write

spins(A,1) = 1= PSL(A, 1) Y piu(A, 1), (7)
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and thus
spiws(A,t) =1 —PSL(A, t). (8)

The renormalized probability sp; »s(A,t) can be correlated to the system hetero-
geneity at time ¢.

The LSAS approach has to specify the action associated with the virtual state
introduced. If the selected state is vs then the agent selects one of the following two
strategies in a random manner:

e An accessible state is chosen randomly with uniform probability.

e The available states are ranked based on the information received from other
agents and the knowledge base. The most promising state has the highest prob-
ability of being selected by the agent.

Proposed LSAS approach ensures the increasing of randomness in the selection
process with the decreasing of the pheromone sensitivity level PSL for an agent that
makes decisions based on stigmergic information.

5.2 Learning in LSAS

LSAS agents can learn to adapt their PSL according to the environment charac-
teristics (and based on previous experience) facilitating an efficient and balanced
exploration and exploitation of the solution space. The initial PSL values are ran-
domly generated.

During their lifetime agents can potentially improve their performance by learn-
ing. This process translates to modifications of the pheromone sensitivity. The PSL
value can increase or decrease according to the search space topology encoded in
the agent’s experience.

Low sensitivity of agents to pheromone trails encourages a good initial explo-
ration of the search space. High PSL values emphasize the exploitation of previous
search results.

Several learning mechanisms can be engaged at individual or global level. A sim-
ple reinforcing learning mechanism is proposed in the current LSAS model. Accord-
ing to the quality of the detected solution, the PSL value is updated for each agent
after a complete solution is created.

Agents with high PSL value (above a specified threshold «y) are environment ex-
ploiters and they will be encouraged to further exploit the search region by increasing
their PSL value each time a good solution is determined. Agents with small PSL
value are good explorers of the environment and good solutions will be rewarded by
decreasing agent PSL value (emphasizing space exploration). In the current paper,
the most natural choice of threshold v is considered, v = a (where a refers to the
PSL threshold modulating the agent behavior). More elaborated schemes for setting
the parameter v as a function of a may induce a more sophisticated behavior.

PSL(A,t) represents the PSL value of the agent A at iteration ¢ and S(A,t)
is the solution detected. The best solution determined by the system agents (until
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iteration t) is denoted by Best(t). The proposed learning mechanism defines comple-
mentary approaches depending on the current value of PSL(A,¢). If PSL(A,t) > v
the following rules apply:

o If S(A,t) is better than Best(t) then A is rewarded by increasing its PSL value
according to the following learning rule:

PSL(A,t)
PSL(A, ¢ + 1) = min <1,PSL(A,t) 4 aint ) . 9)

o If S(A,t) is worse than Best(t) then A is ‘punished’ by decreasing its PSL value
according to the following learning rule:

_ PSL(A,t)
PSL(A,t+ 1) = max (0, PSL(A,t) —e @2 ) ) (10)

If PSL(A,t) <~ the following rules are engaged:

o If S(A,t) is better than Best(t) then A is rewarded by decreasing its PSL value
according to the learning rule (10).

o If S(A,t) is worse than Best(t) then agent A is ‘punished’ by increasing its PSL
value according to the learning rule (9).

It should be emphasized that the proposed learning mechanism is efficient for
scenarios such as the following one:

1. Consider an exploiter agent obtaining low-quality solutions for several tours —
the agent is ‘punished’ by decreasing its PSL value repeatedly;

2. if the PSL value decreases below the threshold value v and the agent starts
producing better solutions, the learning rule of decreasing the PSL value is
applied as a rewarding mechanism in this case;

3. the performance of the agent will enhance with the agent’s exploiting capabilities
in this scenario.

LSAS agents learn the characteristics of the search space via a dynamic change
in the PSL values. Good explorers of the solution space will be encouraged to further
explore the environment more aggressively. Promising solutions already identified
will be further exploited by rewarding the corresponding agent.

5.3 The LSAS Computational Model

The LSAS model is initialized with a population of agents that have no knowledge
of the environment characteristics. Each agent deposits pheromone on the followed
path and is able to communicate to the other agents in the system the knowledge it
has about the environment after a full path is created or an intermediary solution
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is built. The infrastructure evolves as the current agent that has to determine the
shortest path is able to make decisions about which route to take at each point in
a sensitive stigmergic manner.

Agents with small PSL values normally choose only paths with very high phe-
romone intensity or alternatively use the knowledge base of the system to make
a decision. These agents can easily take into account ACL messages received from
other agents. The information contained in the ACL message refers to environment
characteristics and is specific to the problem that is being solved. On the other
hand, agents with high PSL values are more sensitive to pheromone trails and easily
influenced by stronger pheromone trails. However, this does not exclude the pos-
sibility of additionally using the information about the environment received from
other agents.

These considerations can be summarized by the following algorithm:

Learning Sensitive Agent System (LSAS)
Begin
Set parameters pheromone trails
Initialize pheromone trails
Initialize knowledge base
‘While stop_condition is false
Activate a set of agents with various PSL
Place each agent in search space
Do for each agent
Apply a state transition rule to incrementally build a solution.
Determine next move (stigmergic strategy / direct communication).
Apply a local pheromone update rule.
Propagate learned knowledge.
Until all agents have built a complete solution
Update PSL value for each agent using proposed learning mechanism.
Apply a global pheromone update rule.
Update knowledge base (using learned knowledge).
End While
End

6 LSAS FOR SOLVING NP-HARD PROBLEMS

The Traveling Salesman Problem (TSP) is a well-known NP-hard problem in which
a Hamiltonian path must be identified. Let G = (V, E) be an n-node undirected
graph whose edges are associated with non-negative costs. Let us assume that G is
a complete graph (if there is no edge between two nodes, it can be added to it with
an infinite cost). The aim of the problem is therefore to find a minimum-cost tour
passing through all nodes of the graph exactly once.
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The LSAS model is engaged in solving one version of TSP and a generalization
of TSP. The first problem addressed is the Asymmetric Traveling Salesman Problem
(ATSP) characterized by the fact that the cost of edge (4, j) is not the same as the
cost for the inverse edge (j,1).

The other problem considered is the Generalized Traveling Salesman Problem
(GTSP). Let Vi,...,V, be a partition of V from graph G into p subsets called
clusters. The cost of an edge (i, 7) € E is ¢(i, 7). GTSP refers to finding a minimum-
cost tour H spanning a subset of nodes such that H contains exactly one node from
each cluster V;, i € {1,...,p}.

The implemented LSAS model works similarly for both TSP considered prob-
lems. Agents deposit pheromone on the followed path. Unit evaporation takes place
each cycle. This prevents unbounded intensity trail increasing. In order to stop
agents visiting the same node in the same tour a tabu list is maintained.

LSAS is implemented using sensitive stigmergic agents with initial randomly ge-
nerated PSL values. Sensitive-explorer agents autonomously discover new promising
regions of the solution space to sustain search diversification. Each generation the
PSL values are updated according to the reinforcing learning mechanism described
in Section 5. The learning rule used in LSAS ensures a meaningful balance between
search exploration and exploitation in the problem solving process.

The LSAS model for solving TSP works as follows:

LSAS algorithm for solving TSP
Step 1. Initially the agents are placed randomly in the nodes of the graph. The
PSL value of each agent is randomly generated.

Step 2. Each LSAS agent moves to a new node based on its current PSL value:

(i) PSL < a — direct communication: random decision making influenced by
information received from other agents or found in the knowledge base,

(ii) PSL > a — stigmergic strategy: next node is selected with a probability
based on the distance to that node and the amount of trail intensity on the
connecting edge.

If the virtual state is selected, the agent randomly chooses on of the strategies:

(A) An accessible state is chosen randomly with uniform probability; and

(B) The probability of selection is based on the state rank generated using the
information received from other agents and the knowledge base.

Step 4. The agent sends an ACL message to the other agents containing the latter
edge formed and its cost.

Step 5. The trail intensity is updated.

Step 6. The PSL value for each agent is recalculated using the LSAS learning rule.
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Step 7. Only agents that generate the best tour are allowed to globally update the
virtual pheromone and the knowledge base. The global update rule is applied
to the edges belonging to the best tour.

Remark. A run of the algorithm returns the shortest tour detected.
Sections 7 and 8 present the numerical results of this algorithm for a set of ATSP
and GTSP instances.

7 LSAS IN SOLVING ATSP. NUMERICAL EXPERIMENTS

The LSAS model for solving ATSP is tested for several instances of the problem
considered. The performance of the proposed LSAS model in solving ATSP is com-
pared to the results of standard Ant Colony System (ACS) technique [9] and the
Min-Max Ant System (MMAS) [17].

7.1 Numerical Results

Several problem instances from TSP library [12] are considered for numerical expe-
riments. TSPLIB provides the optimal objective values (representing the length of
the tour) for each problem.

In each algorithm, ten ants are used and the average of the best solutions is
calculated for ten successive runs. The termination criteria are given by limiting
the length of running time for each algorithm (i.e. maximum ten minutes of running
time). The thresholds a and 7 are both set to 0.5 in all experiments.

The proposed LSAS model detects a near-optimal or optimal solution for all
problems engaged in the numerical experiments. Figure 1 presents the average
deviation of the mean best values obtained by the compared models for the ATSP
instances considered. It can be observed that the LSAS model performs better
compared to the other models considered for all problems.

These test results indicate that the proposed LSAS model is able to obtain
better results compared to standard ant-based models emphasizing the potential of
learning stigmergic agent models.

7.2 Statistical Analysis

The Expected Utility Approach [10] technique is employed for statistical analysis
purposes. The results of the test are presented in Table 1.
Let x be the percentage deviation of the heuristic solution and the best known
solution of a particular heuristic on a given problem:
heuristic solution-best known solution

— 100.
* best known solution x

The expected utility function euf can be expressed as:

euf =7y —pB(1—0bt)™", (11)
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Some ATSP instances
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Fig. 1. Average deviation of mean best values obtained by ACS, MMAS and LSAS in
solving ATSP instances Ry48p, Ft70, Krol24 and Ftv170

where v = 500, 8 = 100 and ¢ = 0.025. b and € are the estimated parameters of the
Gamma function.

Because four problems have been used for testing, the following notations are
used in Table 1:

E:

RNgre.

4 4
1 o= 8% T
ij732: ZZ(I‘j—w)Z,b: 7C: (;)2 (12)
j=1

As indicated in Table 1, the proposed LSAS model obtains Rank 1 (the last
column in Table 1). This result emphasizes that LSAS is more accurate compared to
ACS and MMAS techniques in detecting ATSP solutions for the considered problem
instances (the mean values of each algorithm have been engaged for the statistical
analysis).

Heuristic T 52 b c euf Rank
ACS 1.6047 0.4038 0.2516 6.3771 391.58 3
MMAS 0.9458 0.3651 0.3860 2.4501 395.11 2
LSAS 0.3484 0.0457 0.1312 2.6561 398.23 1

Table 1. Statistical analysis results for compared models in solving ATSP

8 LSAS IN SOLVING GTSP. NUMERICAL EXPERIMENTS

The LSAS computational model is used for solving GTSP. The performance of the
proposed model in solving GTSP is compared to the results of the ACS technique [6,
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17], the Nearest Neighbor (NN) algorithm, the GI® composite heuristic [18] and
Random Key Genetic Algorithm (tkGA) [20].

8.1 Compared Models

The algorithm Ant Colony System for GTSP [17] is based on the ACS [6, 7] idea
of simulating the behavior of a set of agents that cooperate to solve a problem by
means of simple communications.

In the Nearest Neighbor algorithm the rule is always to go next to the near-
est as-yet-unvisited location. The corresponding tour traverses the nodes in the
constructed order.

The composite heuristic GI® is composed of three phases: the construction of
an initial partial solution, the insertion of a node from each non-visited node-subset,
and a solution improvement phase [18].

The Random Key Genetic Algorithm combines a genetic algorithm with a lo-
cal tour improvement heuristic. Solutions are encoded using random keys, which
circumvent the feasibility problems encountered when using traditional GA encod-
ings [20].

8.2 Numerical Results

The data set of Padberg-Rinaldi city problems (T'SP library [12]) is considered for
numerical experiments.

The parameters of the LSAS algorithm are similar to those of ACS: ten ants
are used and the average of the best solutions is calculated for ten successive runs.
The termination criteria are given by the maximum of 300 trials and 100 tours (in
this case, the execution time required by each algorithm can also be analysed). The
thresholds a and  are both set to 0.5.

Figures 2 and 3 present the average deviation of the best mean values obtained
by the compared models for the GTSP instances considered (i.e. 16PR76, 22PR107,
22PR124, 28PR136, 29PR144, 31PR152, 46PR226, 53PR264, 60PR299, 88PR439).
The LSAS results are depicted in Figure 3.

The proposed LSAS model obtains the optimal solutions for 7 out of the 10 prob-
lem instances engaged in the numerical experiments. For two other problem in-
stances, the solutions reported by the proposed model are very close to the optimal
values and they are better than those detected by the methods considered.

8.3 Statistical Analysis

A statistical analysis test is performed using the Expected Utility Approach [10]
technique to determine the most accurate heuristic. The results of the test are
presented in Table 2.

The expected utility function euf is the same with the one used for the statistical
analysis on ATSP results (see Equation (11)). The parameters for this function are



Learning Stigmergic Agents for Complex Problems 351

25,0000 -
20,0000 .
* B
o 15,0000 1 |
E *
E 10,0000 A ‘ ‘
S . , .
[
[a]
/7
i
8 9 10
\ - 4--NN - 0O-c3 — A - ACS \

Fig. 2. Average deviation of mean best values obtained by NN, GI® and ACS in solving
GTSP

7,0000 - A
6,0000 -| 'I
I
5,0000 g
/
 4,0000 - /
5
% 3,0000 - I
2,0000 -
A
P
1,0000 —=
ol e o} —— ol
0,0000 +—{@}——@}-—==o}-=-o}-——{o|——[@}——[O]| (0| —— 18—~
1 2 3 4 5 6 7 8 9 10

I
%
>
O
%2]
I
m}
[
=
)
>

— @ - LSAS \

Fig. 3. Average deviation of mean best values obtained by ACS, rkGA and LSAS in
solving GTSP

the following: v = 500, 8 = 100 and ¢t = 0.025. The values of 7, s2, b and € required
for computing the expected utility function are those given by Equations (12) but
calculated against the ten GTSP problem instances considered.

The last column in Table 2 provides the rank 1 to 5 of the entries. It can be
observed that LSAS has Rank 1 and represents the most accurate algorithm from
the set of compared models.
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Heuristic T 52 b c euf Rank
NN 0.0920  0.0042 0.0458  2.0093 399.7695 5
GI® 0.0083  0.0001 0.0153  0.5431 399.9793 3
ACS 0.0105  0.0060 0.5766  0.0181 399.9737 4
rkGA 0.0003  0.0059 17.6890 0.000019 399.9989 2
LSAS 0.00021  0.0059 28.4208 0.000007 399.9991 1

Table 2. Statistical analysis results for compared models in solving GTSP

8.4 Analysis of Algorithm Execution Times

In terms of running time of the algorithm, LSAS reports competitive performance
compared to the other models considered. Figures 4 and 5 depict the running times
for the ten GTSP instances considered (first seven in Figure 4 and last three in
Figure 5). The LSAS numerical results have been obtained using a Java imple-
mentation of the algorithm running on a AMD Athlon 2600+, 333 Mhz with 2 GB
memory.
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Fig. 4. Running times for the 16PR76 (1), 22PR107 (2), 22PR124 (3), 28PR136 (4),
29PR144 (5), 31PR152 (6) and 46PR226 (7) GTSP instances obtained by NN, GI?,
ACS, rkGA and LSAS

The LSAS model can be improved in terms of execution time (particularly com-
pared to the tkGA model). Potential improvements regard the parameter values,
an efficient combination with other algorithms or enhancing the agents with the
capability of fully working in parallel on the inner loop of the algorithm. It should



Learning Stigmergic Agents for Complex Problems 353

1200 9
1000 - L
8 .
S 800 §
(@] ”
(&)
2 ,
[} ”
£ 600 . .
3} ‘ s
£ . It
400 ¢ <
7 -
L0 gl L~
200 - et =T
S
se==* 2 "___
O T e mmmm  m w— m — - —
8 9 10
-0- NN -#-GI3 -4A--ACS —x- tkGA —@- ‘LSAS

Fig. 5. Running times for 53PR264 (8), 60PR299 (9) and 88PR439 (10) GTSP instances
obtained by NN, GI3, ACS, rkGA and LSAS

be noted that LSAS reports better running times compared to the ACS model sug-
gesting the benefits of system heterogeneity in the search process. Diversification of
behavior modulated by various PSL values combined with the learning mechanism
in LSAS results in higher-quality solutions obtained faster compared to ACS.

The numerical experiments and comparisons emphasize the potential of the pro-
posed hybrid approach to address complex problems and facilitate further connec-
tions between multi-agent systems and nature inspired computing.

9 CONCLUSIONS AND FUTURE WORK

Solving large complex problems represents a challenging task. The idea explored
in the current paper refers to combining two different complementary techniques in
order to address different facets of complexity.

In the proposed approach to address complex problems, agents adopt a stigmer-
gic behaviour (being able to produce pheromone trails) as a local search mechanism.
Agents use local search to identify problem solutions. Direct communication enables
agents to share knowledge about the environment. Each stigmergic agent is cha-
racterized by a certain level of sensitivity to the pheromone trails. The non-uniform
pheromone sensitivity allows various types of reactions to a dynamic environment.
During their lifetime, agents are able to learn by modifying their sensitivity level
in order to maintain a good balance between search diversification and intensifica-
tion.
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This approach results in a new metaheuristic called LSAS (Learning Sensitive
Agent System) able to address problems that involve very complex search spaces.
Within LSAS, solutions are incrementally built by agents. Numerical experiments
indicate the effectiveness and the potential of the proposed LSAS technique.

Future research directions focus on the use of agents with sensitive stigmergy
for solving real-world problems in non-stationary environments. Stigmergic agents
can share information concerning dynamic changes in the environment (e.g. node
or edge removing in a dynamic graph, cost modification of an edge, introduction of
new nodes or new edges) improving the quality of the search process. The LSAS
approach is potentially useful for addressing large problems concerning routing, job
assignement and schedulling. Other problems of interest refer to communication in
mobile systems and dynamic location problems.
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