
Computing and Informatics, Vol. 31, 2012, 45–60

SERVICE ORCHESTRATION ON A HETEROGENEOUS
CLOUD FEDERATION

Jorge Ejarque, Javier Álvarez, Raül Sirvent

Grid Computing and Clusters Group
Barcelona Supercomputing Center
Nexus II Building, Jordi Girona, 29, 08034 Barcelona, Spain
e-mail: {jorge.ejarque, javier.alvarez, raul.sirvent}@bsc.es

Rosa M. Badia

Grid Computing and Clusters Group
Barcelona Supercomputing Center
Nexus II Building, Jordi Girona, 29, 08034 Barcelona, Spain
&
Artificial Intelligence Research Institute
Spanish National Research Council
e-mail: rosa.m.badia@bsc.es

Henar Muñoz

Telefónica Research and Development
Distrito C, Edificio Oeste 1, Ronda de la Comunicación s/n, 28050 Madrid, Spain
e-mail: henar@tid.es

Abstract. During the last years, the cloud computing technology has emerged as
a new way to obtain computing resources on demand in a very dynamic fashion and
only paying for what you consume. Nowadays, there are several hosting providers

which follow this approach, offering resources with different capabilities, prices and
SLAs. Therefore, depending on the users’ preferences and the application require-
ments, a resource provider can fit better with them than another one. In this paper,
we present an architecture for federating clouds, aggregating resources from differ-



46 J. Ejarque, J. Álvarez, R. Sirvent, R. M. Badia, H. Muñoz

ent providers, deciding which resources and providers are the best for the users’

interests, and coordinating the application deployment in the selected resources
giving to the user the impression that a single cloud is used.

Keywords: Cloud computing, cloud federation, service orchestration, interoper-
ability

1 INTRODUCTION

Cloud computing [1] has caused a big impact in the way a traditional data center
was managed: whenever users wanted a machine to compute some of their processes,
they had to negotiate in person for a good price with a data center in order to use
the machines. When this contract was established, users could then deploy their
services in the data center. Nowadays, the dynamism of the cloud enables the users
to make this negotiation on-line, checking the price of the different infrastructure
providers available, and selecting the most appropriate one for their needs. Once
selected, virtualization technologies enable an easy deployment of the software that
users want to run in the cloud. Many IaaS providers exist nowadays since the ap-
pearance of Amazon EC2 [2], which was one of the first providers to adopt the utility
computing paradigm. There are some commercial products such as Flexiscale [3] or
ElasticHosts [4], and some other cloud middleware coming from the academia side,
such as Eucalyptus [5], OpenNebula [6] or EmotiveCloud [7].

One of the problem that arises from such a big set of infrastructure offers in order
to deploy a service is the lack of interoperability between the different platforms:
users must decide in advance to which provider they are willing to deploy their
services, and thus use its API in order to do so. This has the clear limitation
that only a single infrastructure provider can be used in a deployment. Although
some initiatives are gaining importance in order to solve this problem (i.e. OCCI [8]),
many infrastructure providers are reluctant to change their defined APIs. Moreover,
it is not only a problem about having different interfaces in the different providers,
since they also use different data models to represent their resources, making the
interoperability even more difficult.

From what has been explained, it is clearly seen that an intermediate layer is
needed in order to shield users from such a variety of cloud offers, and not only
for this, but also for aggregating the resources of the different providers in a single
entity. This is what is known as cloud federation, the ability of interacting with all
these different technologies in order to deploy a service. The federation of clouds is
a hot topic nowadays, and is one of the objectives of the NUBA project.

The NUBA project [9] is a Spanish funded R&D project whose main objec-
tive is to develop a framework which makes the deployment of business services in
an automatic and easy way, allowing them to dynamically scale taking into account
performance and BLOs. More specifically, in the NUBA architecture there is a layer



Service Orchestration on a Heterogeneous Cloud Federation 47

in charge of the federation of the underlying cloud infrastructures, which is able
to handle the full service deployment lifecycle among different private and public
cloud providers. This layer is the main work described in this paper. NUBA also
provides a low-level infrastructure to build a private cloud, and an upper layer which
facilitates the service creation.

The rest of the paper is structured as follows: Section 2 presents the state of the
art regarding federation in cloud infrastructures. Section 3 describes the designed
architecture in order to achieve federation of private and public clouds, analyzing
each of the components of the architecture, whose implementation is described in
Section 4. Section 5 shows a usage case which tests the implemented architecture
functionalities. Finally, Section 6 draws conclusions of this paper, and shows future
directions of this research.

2 RELATED WORK

Cloud computing focuses on delivering infrastructure (IaaS), platform (PaaS), and
software (SaaS) as services. In the particular case of IaaS, we also distinguish
between private clouds (a cloud made with the private machines of a company) and
public clouds (those offering computing resources to the general public i.e. Amazon
EC2). In this paper we focus on the federation of both public and private clouds.

There exist some projects already tackling the federation of clouds, RESER-
VOIR [10] being one of the first European projects focusing on this topic. In
RESERVOIR, the federation deals with problems such as having different providers,
each of them with its own API. Besides, the federation model follows an outsourcing
pattern between Infrastructure Providers (IPs): when an IP runs out of comput-
ing capacity, it outsources this demand to another IP which whom it already has
an agreement to do so. RESERVOIR does not have an aggregator figure for inte-
grating different infrastructures, such as the Federated Cloud Orchestrator in our
paper, and the outsourcing cannot be done to public clouds, as we do.

Another important project dealing with cloud federation is OPTIMIS [13]. The
OPTIMIS goal is to create a toolkit for scalable and dependable service platforms
and architectures that enable flexible and dynamic provisioning of cloud services.
The innovations behind the toolkit are aimed at optimizing the whole service life
cycle, including service construction, deployment, and operation, on a basis of as-
pects such as trust, risk, eco-efficiency and cost. Despite the similarities with our
work, OPTIMIS is at its early stages and no toolkit is available by now.

In InterCloud [14], cloud federation is achieved by means of three main compo-
nents: a Cloud Broker (acting on behalf of users), a Cloud Coordinator (handling
the private cloud), and a Cloud Exchange (aggregating the information to match
user requests with service providers). In their simulation experiments, a Cloud Co-
ordinator decides if a private cloud has capacity to attend a request. If this is not
the case, the service is outsourced to Amazon EC2. Our policy is to aggregate the
information of the private and public clouds available, and to decide what is the



48 J. Ejarque, J. Álvarez, R. Sirvent, R. M. Badia, H. Muñoz

best distribution of the service considering this aggregated information. Thus, pub-
lic clouds are included into the equation from the beginning, and not only in case of
lack of resources (which is also known as cloud bursting). The fact that InterCloud
is in a very preliminary stage of design is proved because nothing is mentioned in
their paper about how to deal with the integration of data coming from different
data models.

In addition, in terms of API interoperability between clouds, there have been
several proposals for standardization, such as vCloud [11], OCCI [8] and TCloud [12].
In the NUBA architecture, both OCCI and TCloud are considered.

Our work also contributes in data conversion between different data models
from different providers by using semantics. Previous work such as [15, 16] and [17]
has focused on automatic semantic annotation of XML and XML schemes to RDF
and OWL. In our translation, we use these results for creating ontologies from the
providers’ schema. Moreover, we complement this work providing a set of translation
rules, which translate the concepts from one generated ontology to another.

3 ARCHITECTURE

The main goal of the federation layer is to coordinate and maintain a cloud infra-
structure composed by several public and private clouds and offered to users in
a uniformed way as if they were using a single cloud. Our proposal consists on a set
of components which interact to each other in order to deploy the users’ services in
the different managed cloud providers.

Fig. 1. Federated cloud architecture



Service Orchestration on a Heterogeneous Cloud Federation 49

Figure 1 depicts the overall architecture showing the components of the system.
The Federated Cloud Orchestrator (FCO) is the main component of the architecture.
It is the entry point of the users providing an abstraction layer between them and
cloud providers. It also coordinates the actions required to deploy a service. The
FCO is supported by the Deployment and Optimization (D&O) Manager, which
decides what is the best provider for each service VM. All the required information
to manage the cloud federation is stored in the Common Database (CDB). The
D&OManager queries this component to know which providers are available, where
services have been deployed, etc.

Regarding the interaction with cloud providers, it is done by means of the Open
Cloud Computing Interface (OCCI) because most of cloud middleware for setting
private clouds (OpenNebula, EmotiveCloud, etc) already offer an OCCI implemen-
tation. However, public clouds offer their own interfaces for interacting with them
and their own schemes for describing data. For these reasons, two additional com-
ponents have been added to the architecture: the Resource Mapper (RM), which
is used to translate data between the different cloud providers’ models and the
Interoperability component, which serves as a bridge between the FCO and the dif-
ferent infrastructure providers’ interfaces. The following sections provide a detailed
description of each one of the architecture components.

3.1 Federated Data Model

The different components of the federation layer store and exchange messages con-
taining information about the services, resources, providers, etc. A common data
model has been defined for facilitating the communication between the components
and having a common understanding of each of the parts of the federation.

The Federated Data Model (FDM) is divided into three layers (Figure 2). The
lowest one uses the Common Information Model (CIM) [19] for describing different
types of computational resources and the management services offered by the cloud
providers. The middle layer is in charge of describing the service deployment by
means of the Open Virtualization Format (OVF) [20]. OVF models a service as a set
of sections which describe the computational resources (Virtual Systems), shared
disks and interconnection networks required by a service. It uses CIM concepts
for describing these computational requirements facilitating the matching between
the service requirements and the resource capabilities. The upper layer provides
the concepts for the abstraction layer offered by the FCO which are defined by the
TCloud [12] interface. With this interface, the user can define a Virtual Data Center
(VDC) to describe a virtual infrastructure, Virtual Appliances (VApp) which are
software system used to provide services, and Virtual Networks for interconnecting
the different VApps. The TCloud data model is also related with the lower parts
parts of the figure. It uses OVF and CIM terms for describing the VApps and
Networks.



50 J. Ejarque, J. Álvarez, R. Sirvent, R. M. Badia, H. Muñoz

Fig. 2. Federated data model

3.2 Federated Cloud Orchestrator

The function of the Federated Cloud Orchestrator (FCO) is to provide an abstrac-
tion layer to allow service deployment management in the different cloud infrastruc-
tures. The FCO is the core of the architecture, as it is connected with the other
components and coordinates them in order to achieve the orchestration of service
deployments. Figure 3 depicts these relationships as well as the internal design of
the component.

The FCO has TCloud on its top, which defines a REST interface to build a vir-
tual structure and to create a service environment without the need of keeping in
mind the real infrastructure underneath. Furthermore, within that virtual structure,
service providers are able to specify the connectivity between the VMs they deploy,
which is maintained by the FCO regardless of the cloud providers where the VMs
are finally located.

Regarding service management, the FCO provides the functionalities to deploy,
undeploy and redeploy a service orchestrating all the required actions to guaran-
tee the correct deployment and undeployment of VMs in the different providers
(deployment order, connection conditions, fault tolerance, etc). When a new ser-
vice descriptor is received, the FCO obtains from the D&O the best Infrastructure
Providers which can host each service VM. Afterwards, the FCO selects the most
appropriate providers to guarantee the connexion conditions, deciding which VMs
can share the same private network and thus be deployed in the same provider, or if
a Virtual Private Network (VPN) between different providers is needed. Once the
providers have been selected, the FCO creates each of the mentioned VMs through
the Interoperability component following the order specified in the whole service
description. Moreover, it has to guarantee that all the VMs are deployed correctly
or none of them is. If some of the VMs of a service have already been deployed when
the FCO realizes that one of the conditions above cannot be satisfied, it undeploys
all of them returning to the initial state of the process and throwing an error. Be-



Service Orchestration on a Heterogeneous Cloud Federation 51

Federated Cloud Orchestrator

TCloud Interface

Deployment 
Manager

Undeployment 
Manager

Client

Service 
Provider

CDB

D&O 
Manager

Interoperability
Private 
Cloud

Fig. 3. Federated cloud orchestrator design

sides, the FCO uses the CDB to store all the important information related to the
managed services.

In the case that an undeployment request is submitted to the FCO, it checks
in which provider the VMs of the service have been deployed and then ensures
their correct removal through the Interoperability component. If one or more VM
undeployments cannot be completed after several tries, the FCO informs the user,
which can try the undeployment again in the future. After the process has been
completed, the FCO updates the information stored in the CDB.

Finally, a redeployment occurs when the FCO receives an optimization request
over an already deployed service for deploying a new VM or undeploying existing
VMs. When this happens, the FCO must search for the providers which can host
this new VM taking into account the connectivity issues as it is performed in the
deployment case. Furthermore, the FCO guarantees that these actions are accom-
plished or none of them is.

3.3 Common Database

The Common Database (CDB) serves as a storage system for all the components of
the architecture. It provides tools to manage the storage of service descriptions as
well as other information related to the infrastructures available in the federation.



52 J. Ejarque, J. Álvarez, R. Sirvent, R. M. Badia, H. Muñoz

The FCO uses the CDB to store TCloud entities (e.g. VDCs) and other data required
to manage services. On the other hand, the RM uses the CDB to store its translation
rules and data models. Finally, the D&O uses the CDB information about the
available infrastructure providers and their resources. Thus, it is important that the
CDB provides an efficient XML management system, because all the information
that the other components need to store is represented either in XML or plain text.

3.4 Deployment and Optimization Manager

All the business logic in the federation layer is carried out by the Deployment and
Optimization (D&O) Manager. The D&O Manager is in charge of taking place-
ment decisions, for selecting the most suitable Cloud providers according to Service
Providers (SP) and Infrastructure Providers (IP) policies and technical constraints.
These decisions are taken when a new VM has to be deployed in the federated cloud
(a deployment requested by the FCO) or proactively when it detects a situation
where the current deployment of a VM can be improved.

Figure 4 shows the high level design of the component. The central module is
a rule engine, which is in charge of evaluating a set of rules (from the knowledge base)
over a facts base. The rule evaluation infers what is the most suitable deployment
and invokes optimization actions when optimization facts are found. The Fact’s base
is periodically synchronized with the CDB by means of a sensor which queries it to
obtain new available providers and the resources provided by them. The knowledge
base (composed by a set of rules) is provided by the entities involved in the federation
to model the enterprise, user o service policies. These rules have been classified in
three types according to their role in the federation. On the one hand, the SP
rules model the SP preferences on the resource selection such as the location, energy
efficiency or preferred and forbidden providers (black list). On the other hand,
there are IP rules, which model the IP preferences for selecting their customers.
Finally, the federation rules model the common federation policies, such as rules for
discarding resources and providers which do not fulfill the VM requirements.

3.5 Resource Mapper

The Resource Mapper (RM) is in charge of performing a semantic translation be-
tween the models used by the different cloud providers and the FDM. The semantic
translation methodology used by the RM consists on applying a set of mapping rules
over semantic annotated descriptions.

Figure 5 shows an overview of this methodology. From the different cloud
providers’ schemes, the RM creates an ontology where each concept used by the
provider is mapped to an ontology class. In Addition, some semantic mappings are
included in the RM in order to model the equivalences between the different cloud
providers concepts and the FDM. Once the ontology and the semantic mappings
have been defined, the RM translates descriptions from these providers to the FDM
and vice versa. When a description translation is requested, the RM automatically



Service Orchestration on a Heterogeneous Cloud Federation 53

Fig. 4. Deployment and optimization manager design

Fig. 5. Resource mapper design

annotates it according to the generated provider’s ontology. The annotated descrip-
tion together with the mapping rules are loaded into a rule engine, which evaluates
the mapping rules over the annotated descriptions. As a result of this evaluation,
the rule engine infers an equivalent description following the federated model. The
same process is used for the reverse case (from FDM to provider’s schema). The de-
scription in the federated format is automatically annotated according to the FDM
concepts and the rule engine applies the reverse mapping rules. In both cases, once
the translated description has been obtained, it is serialized in the corresponding
format (XML in the case of the FDM and XML or JSON object for the providers
schemes).



54 J. Ejarque, J. Álvarez, R. Sirvent, R. M. Badia, H. Muñoz

3.6 Interoperability

Public providers offer resources to their users by means of Web Service interfaces.
Unfortunately, there is not a clear standard still for these interfaces and currently
each provider implements their own interface. For this reason, there is a need to
unify them in a common interface which is used by the FCO to deploy the service
VMs. The Interoperability component tries to cover this need. It transforms the
OCCI methods for managing VM instances, storage and network resources into
the equivalent calls to the providers’ methods. To achieve this functionality, the
Interoperability component is supported by the RM for translating the input and
output data between the FDM and the providers’ schemes and by a set of plug-ins
which implement the equivalent execution of the OCCI methods using the providers’
interfaces.

Fig. 6. Interoperability component design

Figure 6 gives a detailed view of the Interoperability component. When the
FCO invokes an OCCI method of the Interoperability component, the OCCI server
extracts the input data, the invoked method and the requested provider. Then, the
input data is sent to the RM, which translates it into the provider’s schema. Once
the input data has been translated, it is used to execute the corresponding provider’s
plug-in, which executes the required method using the provider’s interface. Finally
the output data is translated into the FDM using the RM again.

4 IMPLEMENTATION

This section describes the implementation of the architecture, which has been done
in Java. Every component has been developed as a RESTful Web Service to keep
uniformity in all the interactions. Their interfaces have been implemented using



Service Orchestration on a Heterogeneous Cloud Federation 55

Jersey [21], which has been also used to develop clients for the different components
to facilitate the interaction between them.

The FCO has been implemented following the TCloud interface specification.
TCloud was chosen over OCCI or a custom made interface because the former
was considered to be too low-level oriented and the latter would have moved the
component further away from standards. The FCO has to deal with two kinds
of XML data: TCloud entities and service descriptors (OVF). To make easier the
management of the former, the TCloud XML schema has been bound to a set of Java
classes using JAXB [22].On the other hand, to deal with OVF files, the FCO makes
use of an OVF manager API [27], which is based in JAXB and provides methods to
split service descriptors into groups of VMs within the same private network or to
easily extract service information.

An open source XML repository called eXist [23] acts as CDB, as it covers all
the requirements needed. Thus, eXist can be installed as a standalone server or
deployed in any servlet container as an efficient XML management method which
provides a comfortable REST interface. eXist also supports the definition of queries
in XQuery language [24], which can be invoked through a REST interface to easily
obtain the stored information. Some of these queries have been written to allow
the rest of the components to retrieve datasets or specific information within the
CDB. For instance, the D&O can obtain the providers’ descriptors satisfying certain
conditions, and ignoring the rest of them.

The D&O Manager is mainly composed by the rule engine. For the federated
cloud, the JBOSS expert rule engine [28] has been used. This rule engine uses
DROOLs as the rule language. In this sense, all the rules which arrive from the
service manifest description or directly from the providers are translated into the
DROOL language by the D&OManager. The facts base is composed by a set of Java
objects which are instances from the FDM, whose values are taken from the Common
Database thanks to the Sensor module. Finally, there is the Descriptor Inspector,
which is the D&O manager REST API (extending the TCloud specification), and
the Action Executor, as set of plug-in actions to execute the rule actions when the
condition threshold have been satisfied.

The Resource Mapper has been developed with a custom made REST inter-
face that provides methods to manage translation rules and data models, storing
them in the CDB, and to translate data applying these rules. The translation
part has been done using Jena [25], which provides a engine to evaluate rules over
RDF graphs. The RM first converts the XML to RDF using an XSLT document
based on [18]. Then, it applies the set of rules for the requested provider, and
finally turns back the resulting RDF into XML using another XSLT file, which
has been written from scratch. Those XSLT transformations are managed with
JAXP [26].

The Interoperability front-end has been implemented following the OCCI v1.0
specification with OVF as VM descriptor, because it maintains the uniformity within
the system. In its back end, the Interoperability is composed by a set of plug-ins that
are able to interact with the different public cloud infrastructure providers. This



56 J. Ejarque, J. Álvarez, R. Sirvent, R. M. Badia, H. Muñoz

plug-ins use the RM to translate the OVF descriptor to the input data expected by
the cloud provider.

5 EXPERIMENTATION

We have performed a set of tests to validate architecture implementation and to
check the correct behavior of components. To make these tests, one private cloud
and two external cloud providers (Amazon and Flexiscale) have been registered in
the CDB with the capabilities described in Table 1. For interoperating with the
external providers, the Resource Mapper and Interoperability component have been
configured, defining the translation rules and implementing the corresponding plug-
ins for each external provider. The translation rules have been written to map
data from the FDM to the Amazon and Flexiscale schemas and vice versa. In
addition to these rules, two plug-ins have been implemented to provide basic OCCI
functionalities such as the POST method in Compute using the RunInstances and
CreateServer methods offered by the Amazon and Flexiscale APIs. An example of
a rule to convert an Amazon’s small instance to the FDM is shown below.

[Rule1:

(?ec2 rdf:type ec2:AWS_Small)

->

(?cs rdf:type cim:ComputerSystem)

(?cs fdm:hasMemory ?mem)

(?cs fdm:hasDisk ?disk)

(?cs fdm:hasProcessor ?cpu)

(?mem rdf:type cim:CIM_Memory)

(?mem cim:BlockSize ’1024’^^xsd:float)

(?mem cim:ConsumableBlocks ’1782579’^^xsd:float)

(?d_mem rdf:type cim:CIM_Memory)

(?d_mem cim:BlockSize ’1024’^^xsd:float)

(?d_mem cim:ConsumableBlocks ’167772160’^^xsd:float)

(?disk rdf:type cim:CIM_DiskDrive)

(?disk cim:hasMediaPresent ?d_mem)

(?cpu rdf:type cim:CIM_Processor)

(?cpu cim:MaxClockSpeed ’1000’^^xsd:float)]

Once the infrastructure has been set up, a service deployment (Table 2) is re-
quested using the FCO. It divides the overall Service’s OVF in two OVFs which
include a single VM description each one. Then, the FCO contacts the D&O Ma-
nager to get the best possible allocation for each VMs. For validating this part, the
D&O has been configured with a rule for discarding the providers whose resources
do not fulfill the technical requirements and a query which selects the resources
ranked by price (lowest price is the best). The following lines show how the rule
and query have been implemented.

EnvelopeType(env) ^ VirtualSystemType (env,vs)^ VirtualHardwareSectionType(vs,vh)^

CIMComputerSystemType(comp) ^ HasProcessorPool(comp,cpu) ^HasMemoryPool(comp,ram) ^

HasDiskPool(comp,disk) ^ !item(vh,10)>disk ^ item(vh,3)>!cpu ^ !item(vh,4)>ram

:-

com.setHasScore (0)

SELECT com WHERE CIMComputerSystemType(com)^hasScore(com,score)^score > 0

ORDER BY Price(com)



Service Orchestration on a Heterogeneous Cloud Federation 57

Table 3 shows the selected resources for the requested service deployment ac-
cording to the implemented rules. These lists are returned to the FCO which gets
the first resource of the VM lists and performs the VM creation. For VM1, it in-
vokes directly the OCCI interface provided by the private cloud middleware and, for
VM2, the FCO invokes the Interoperability component which will use the Resource
Mapper to translate the OVF of the VM2 to the Flexiscale’s schema. In case that
a deployment fails, the FCO will try to do the same with the next resource of the
list.

Provider Instances Capabilities (Mem./CPU/Disk) Price

Amazon small 0.5GB/1CPU/160GB 0.085 $/h
large 7.5GB/2CPU/850GB 0.34 $/h
xlarge 7.5GB/4CPU/1.6TB 0.68 $/h

Flexiscale server 17 0.5GB/1CPU/no limit 0.035 $/h + disk
server 18 1GB/1CPU/no limit 0.053 $/h + disk
server 21 4GB/2CPU/no limit 0.178 $/h + disk

Private Cloud max 2GB/2CPU/2TB 0$/h

Table 1. Providers’ description

VM Capabilities

VM1 1GB/1CPU/100GB
VM2 3GB/2CPU/1TB

Table 2. Service description

VM Selected Resources

1. Private Cloud (0 $) – 2. Server 18 (0.061 $/h)
VM1 3. Server 21 (0.20 $/h) – 4. Large (0.34 $/h)

5. XLarge (0.68 $/h)

VM2 1. Server 21 (0.20 $/h) – 2. XLarge (0.68 $/h)

Table 3. Resource selection for service VMs

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the architecture of a cloud federation layer designed
in the context of the NUBA project. This layer is composed of different components
in charge of the set of functionalities to achieve the federation of private and public
clouds. The FCO shields the SP about having to deploy its services in different cloud
providers using different interfaces for each case. The CDB stores all the information
needed to aggregate the information of the cloud providers. The D&O Manager is
able to decide which is the best provider to deploy a service, taking into consideration



58 J. Ejarque, J. Álvarez, R. Sirvent, R. M. Badia, H. Muñoz

rules both from the SP and the IP. Finally, the RM and Interoperability components
provide the functionalities to interact with public clouds translating the different
data models used by IPs to the FDM, which is the data model used by all our
components in order to represent the information in an homogeneous way. All
these components have been implemented as RESTful Web Services, using Java,
and taking into consideration current standard proposals, such as OCCI, TCloud or
OVF.

We have shown we go a step beyond current work in cloud federation, aggre-
gating available resources in order to consider both public and private clouds in the
first step of the deployment (not only to achieve cloud bursting), and also consider-
ing the conversion of data between the different data models of the cloud providers.
Besides, we have an available implementation of the described architecture.

Our future work includes enhancing the functionalities supported by the fede-
ration layer (more specifically by the FCO) in order to cover the full lifecycle of
a service, and the development of new plug-ins for other public cloud providers in
the Interoperability module.

Acknowledgements

This work is supported by the Ministry of Science and Technology of Spain and the
European Union under contract TIN2007-60625 (FEDER funds), the Ministry of
Industry of Spain under contract TSI-020301.1009.3 (Avanza NUBA project) and
Generalitat de Catalunya under contract 2009-SGR-980.

REFERENCES

[1] Vaquero, L.—Rodero-Merino, L.—Caceres, J—Linder, M.: A Break in the
Clouds: Towards a Cloud Definition. In ACM SIGCOMMComputer Communications
Review, Vol. 39, 2009, No. 1, pp. 50–55.

[2] Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/.

[3] Flexiscale Public Cloud. http://www.exiant.com/products/exiscale/.

[4] Elastic Hosts. http://www.elastichosts.com/.

[5] Eucalyptus Community. http://open.eucalyptus.com/.

[6] Open Nebula. http://opennebula.org/.

[7] EMOTIVE Cloud. http://emotivecloud.net/.

[8] Open Cloud Computing Interface Working Group. http://www.occiwg.org/.

[9] NUBA project. http://nuba.morfeo-project.org/.

[10] Rochwerger, B. et al.: The Reservoir Model and Architecture for Open Federated
Cloud Computing. IBM Journal Res. Dev., Vol. 53, 2009, No. 4, pp. 535–545.

[11] vCloud API Specification v1.0, http://communities.vmware.com/docs/

DOC-12464.



Service Orchestration on a Heterogeneous Cloud Federation 59

[12] TCloud API Specification v0.9., http://www.tid.es/files/doc/apis/TCloud_

API_Spec_v0.9.pdf.

[13] Ferrer, A. J. et al.: OPTIMIS: A Holistic Approach to Cloud Service Provisioning.
In 1st International Conference on Utility and Cloud Computing 2010.

[14] Buyya, R.—Ranjan, R.—Calheiros, R.N.: InterCloud: Utility-Oriented Fed-
eration of Cloud Computing Environments for Scaling of Application Services. Algo-
rithms and Architectures for Parallel Processing, LNCS Vol. 6081, 2010, pp. 13–31.

[15] Battle, S.: Round-Tripping Between XML and RDF. In 3rd International Semantic
Web Conference 2004.

[16] Ferdinand, M.—Zirpins, C.—Trastour, D.: Lifting XML Schema to OWL. In
4th International Conference on Web Engineering 2004.

[17] Bohring, H.—Auer, S.: Mapping XML to OWL Ontologies. In 13th Leipziger
Informatik-Tage 2005.

[18] AstroGrid-D XML2RDF. http://www.gac-grid.org/project-products/

Software/XML2RDF.html.

[19] Distributed Management Task Force Inc., Common Information Model Infrastructure
Specification v2.6, DMTF Standard DSP0004, 2010.

[20] Distributed Management Task Force Inc. Open Virtualization Format Specification,
v1.1, DMTF Standard DSP0243, 2010.

[21] Jersey: JAX-RS implementation. http://jersey.java.net/.

[22] Java API for XML Binding. http://jaxb.java.net/.

[23] eXist Open Source Native XML Database. http://exist.sourceforge.net/.

[24] W3C Consortium. XQuery 1.0: An XML Query Language 2010.

[25] Jena 2 Semantic Web Framework. http://jena.sourceforge.net/.

[26] Java API for XML Processing. http://jaxp.java.net/.

[27] Claudia’s OVF Manager. http://claudia.morfeo-project.org/wiki/index.php/
OVF_Manager.

[28] Drools. http://www.jboss.org/drools/.

Jorge Ejarque received his engineering degree in telecommu-
nications (2005) and his M. Sc. degree in computer architecture
network and system (2009) from the Technical University of

Catalunya. In 2004, he was with Technical University of Delft
where he did his Final Thesis. In 2005, he worked as IT con-
sultant in Better Consulting, and at the end of 2005, he joined
the Grid Computing Group in the Barcelona Supercomputing
Center (BSC). During his career at the BSC, he has contributed
in the design and development of different tools for grids and
clouds and has been involved in several national and interna-

tional projects (Red Temática para la Coordinación de Actividades Middleware en Grid,
e-Ciencia, Latin American GRID, CoreGRID and BREIN). Moreover, he was a member
of the experts’ board of the National Grid Initiative and member of the scientific com-
mittees of the Ibergrid (2009/10), ADVCOMP (2009/11) and Cloud Computing (2010/11)



60 J. Ejarque, J. Álvarez, R. Sirvent, R. M. Badia, H. Muñoz

conferences. He is currently working towards his Ph.D. on semantic interoperability of

distributed computing platforms and is also involved in the Spanish NUBA project and in

the FP7 project OPTIMIS, which are focused on the construction of platforms for efficient

service deployment in different cloud providers.


