
Computing and Informatics, Vol. 31, 2012, 73–88

QOS PROVISIONING BY META-SCHEDULING
IN ADVANCE WITHIN SLA-BASED
GRID ENVIRONMENTS

Javier Conejero, Luis Tomás
Blanca Caminero, Carmen Carrión

Department of Computing Systems
University of Castilla-La Mancha
02071, Albacete, Spain
e-mail: {FJavier.Conejero, Luis.Tomas, MariaBlanca.Caminero,

Carmen.Carrion}@uclm.es

Abstract. The establishment of agreements between users and the entities which
manage the Grid resources is still a challenging task. On the one hand, an entity
in charge of dealing with the communication with the users is needed, with the
aim of signing resource usage contracts and also implementing some renegotiation
techniques, among others. On the other hand, some mechanisms should be im-
plemented which decide if the QoS requested could be achieved and, in such case,
ensuring that the QoS agreement is provided. One way of increasing the probability

of achieving the agreed QoS is by performing meta-scheduling of jobs in advance,
that is, jobs are scheduled some time before they are actually executed. In this way,
it becomes more likely that the appropriate resources are available to run the jobs
when needed. So, this paper presents a framework built on top of Globus and the
GridWay meta-scheduler to provide QoS by means of performing meta-scheduling
in advance. Thanks to this, QoS requirements of jobs are met (i.e. jobs are fini-
shed within a deadline). Apart from that, the mechanisms needed to manage the
communication between the users and the system are presented and implemented
through SLA contracts based on the WS-Agreement specification.

Keywords: Grid meta-scheduling, QoS, SLAs, WS-Agreement

74 J. Conejero, L. Tomás, B. Caminero, C. Carrión

1 INTRODUCTION

In highly variable and heterogeneous systems, like Grid environments, where re-
sources may be scattered across multiple domains and under different access poli-
cies, it is extremely difficult to provide QoS to users. Hence, the Grid infrastructure
must provide the needed services for automatic resource brokerage which take care
of the resource selection and negotiation process [1]. This infrastructure is named
“meta-scheduler” [2] and hides this process from the user. However, the scheduling
process is complicated due to several facts, like heterogeneous and distributed nature
of resources, different characteristics of the applications, and specially due to the
fact that the meta-scheduler entity typically lacks total control and even complete
knowledge of the system resources. This means that it is not always possible to
reserve the resources selected for executing the jobs which finally implies that it is
not possible to ensure the execution of a job into a resource within the requested
time.

Thus, some mechanisms to provide QoS in such kind of environments have to
be developed. As reservations in advance are not always feasible, the idea is to try
to ensure that a specific resource is available when a job requires it through meta-
scheduling in advance of resources. This meta-scheduling in advance algorithm can
be defined as the first step of the reservations in advance algorithm, in which the
resources and the time periods to execute the jobs are selected (and the system
keeps track of the decisions already made and the usage of resources) but making
no physical reservation. This way, the system needs to estimate the future resource
status (when the jobs to schedule will be executed) and how long their execution
will be. To this end, some predictions techniques are implemented.

On the other hand, and taking into consideration that the user’s experience of
the Grid is determined by the functionality and performance of this meta-scheduler
system, it is needed to develop some mechanism to deal with the interaction among
users and the meta-scheduling system. To this end, Service Level Agreements
(SLAs [3]) contracts are the main mechanism to achieve this goal.

Nowadays economy is moving from product oriented economy to a service orien-
ted economy in computational environments. This trend requires new mechanisms
to manage and enforce the use of computational resources in an efficient way for
an optimized exploitation of them; but this exploitation is strongly managed by
economical and business motivations, where mechanisms to enforce and negotiate
legal statements are needed [4]. Due to this fact, many efforts have been done to
tackle this problem within Grid environments, resulting in the Grid Resource Allo-
cation Agreement Protocol (WS-Agreement) specification [5] for SLAs. Thenceforth,
there are many Grid projects interested in the implantation and use of SLAs (e.g.
AssessGrid [6], Brein [7], and SLA@SOI [8]).

For our purpose, SLAs represent a formalization of the job submission process
for the Grid. Furthermore, they are a mechanism for a formal representation of the
temporal restrictions that correspond to the associated job, which are used in the
meta-scheduling in advance process, with the objective of a QoS improvement.

QoS Provisioning within SLA-Based Grid Environments 75

To sum up, the main contribution of this paper is a framework built on top of the
GridWay meta-scheduler [9] to provide QoS by means of performing meta-scheduling
in advance, with a SLA-based user interface. The usage of this framework allows
jobs to be executed within their deadlines thanks to some implemented heuristics
which estimate the future status of resources and how long a job execution will be.

The paper is organized as follows. Related work is presented in Section 2.
In Section 3 the framework to perform SLA-based meta-scheduling in advance is
outlined. Section 4 shows the methodology to carry out the communication process
between the users and the system through SLA contracts. Finally, the conclusions
obtained and the suggested guidelines for future work are outlined in Section 5.

2 RELATED WORK

The provision of QoS in Grids is still an open issue which has been explored by
several research projects, based on advanced reservation, such as GARA [10], Grid
Capacity Planning [11], or VIOLA [12], among others. All these techniques have the
same main drawback, namely not all the resources can be reserved for several reasons
(e.g. not all the resources provide this functionality). Due to this limitation, our
work aims at performing scheduling in advance rather than reservations of resources
in advance.

Meta-scheduling in advance needs to perform predictions about the future re-
source status and about job duration into resources. A survey of some prediction
techniques can be found in [13]. Examples include applying statistical models to pre-
vious executions [14] and heuristics based on job and resource characteristics [15].
In [14], it is shown that although load exhibits complex properties, it is still con-
sistently predictable from past behaviour. In [15], an evaluation of various linear
time series models for prediction of CPU loads in the future is presented. In our
work, a technique based on historical data is used, since it has been demonstrated
to provide better results compared to linear functions [16].

This kind of scheduling needs to have a suitable data structure to be able to
manage all the information efficiently. There are several structures for managing
this information needed by the scheduler, for instance Grid Advanced Reservation
Queue [17] (GarQ), and a survey can be found in [17]; but in this work, red–black
trees are used since they provide us with efficient access to the information about
resource usage, as it has been demonstrated in [18].

On the other hand, SLAs are a hot topic nowadays. Many efforts have been
done in several fields, like their management [19], QoS implications [20], semantic
and virtualization exploitation [21] and especially in their standardization. The most
important improvement within SLAs has been the WS-Agreement specification [5],
which is considered the “de-facto” standard. The structure and mechanisms to de-
ploy SLAs over a system are described from a global point of view, and thanks to the
recent revision of the WS-Agreement specification [22], a new negotiation protocol
has been defined, introducing the renegotiation concept as a multiple message in-

76 J. Conejero, L. Tomás, B. Caminero, C. Carrión

teraction between user and service provider to achieve better agreements. However,
WS-Agreement is not the only available specification. SLAng [23] and WSLA [24]
are alternatives to it, but due to their lack of support they are not recommended.

Due to the Service Level Agreements importance, many projects are interested
on its implementation [25]. Most of them implement the WS-Agreement, like
SLA@SOI [8], AssessGrid [6] and Brein [7]. The first one is focused on the im-
plantation of SLAs into Service Oriented Infrastructures (SOIs [8]) from a generic
point of view. AssessGrid and Brein have a common purpose, which is to promote
Grid computational environments into business environments and society. However,
AssessGrid is focused on risk assessment for trustable Grids while Brein is focused
on an efficient handling and management of Grid computing based on artificial intel-
ligence, web semantics and intelligent systems. Another important project within
this matter is WSAG4J(WS-AGreement for Java [26]), which is a generic imple-
mentation of the WS-Agreement specification developed by the Fraunhofer SCAI
Institute as a development framework. It is designed for a quick development and
debugging of services and applications based on WS-Agreement.

It should be noted that not all projects implement WS-Agreement for their SLA
management. An example is represented by NextGrid [27], which is focused on
business Grid exploitation.

3 SCHEDULING IN ADVANCE FRAMEWORK (SA-LAYER)

In a real Grid environment, many resources cannot be reserved, due to the fact that
not all the local resource management systems permit them. Apart from that, there
are other types of resources such as bandwidth, which are shared among several
administrative domains making their reservation more difficult or even impossible.
This is the reason to perform meta-scheduling in advance rather than reservations
in advance to provide QoS in Grids. This means that the system keeps track of the
meta-scheduling decisions already made to take future decisions and with the aim
of not overlapping executions. However, no physical reservations are done. So, our
scheduling in advance process follows the next steps (see Figure 1):

1. A user sends a request to the meta-scheduler at his local administrative domain
through the SLA manager (see Section 4). Every SLA contract (job execution
request) must provide a tuple with information on the application and the input
QoS parameters: (in file, app, t s, d). in file stands for the input files required
to execute the application, app. In this approach the input QoS parameters are
just specified by the start time, t s (earliest time jobs can start to be executed),
and the deadline, d (time by which jobs must have been executed).

2. The meta-scheduler communicates with the Gap Management entity to obtain
both the resource and the time interval to be assigned for the execution of the job.
The heuristics algorithms presented here take into account the predicted state of
the resource (both for computational resources and interconnection networks),
the jobs that have already been scheduled and the QoS requirements of the job.

QoS Provisioning within SLA-Based Grid Environments 77

Meta-scheduler N

Meta-scheduler 1

Meta-scheduler N

Resource Usage
Gap Management

Meta-scheduler 1

Meta-scheduler N

Resource Usage
Gap Management

3

1

4

2

ADMINISTRATIVE DOMAIN 0

SLA

Manager

Meta-scheduler 1

Resource

Usage

Management

Meta-scheduler N

Meta-scheduler 1

Resource

Usage

Mannaaggemennt

AD 2

SLA

Manager

Meta-scheduler N

Meta-schedule

Resource

Usage

Gap

Management

Meta-scheduler N

Meta-schedule

Resource

Usage

Gap

Managemennt

AD 1

SLA

Manager

Fig. 1. Meta-Scheduling in advance process

3. If it is not possible to fulfill the user’s QoS requirements using the resources of its
own domain, a communication with meta-scheduler of other domains starts. In
order to perform the inter-domain communications efficiently, techniques based
on P2P systems (as proposed by [28, 29], among others) can be used. This way,
the meta-scheduler at each domain knows some of the meta-schedulers at other
domains, and can forward jobs to them when necessary.

4. If it is still not possible to fulfill the QoS requirements (not even in other do-
mains), a renegotiation process is started between the user and the SLA manager
in order to define achievable QoS requirements. Recall that this renegotiation,
as well as the overall interaction with users, is conducted by means of Service
Level Agreements (SLAs). A scheme for advancing and managing QoS attributes
contained in Grid SLAs contracts is implemented and detailed in Section 4.

As Figure 1 depicts, there may be more than one meta-schedulers in each local
administrative domain (subdomains of a Virtual Organization (VO)), albeit they
have to communicate with the same Gap Management entity. The Gap Management
entity has the information about future usage of the resources of its domain and could
also be replicated to avoid the single point of failure problem. Even the resources
may be split into several subdomains in case of a huge number of them, making it
quite scalable. This represents an idealistic scenario where all the jobs are submitted

78 J. Conejero, L. Tomás, B. Caminero, C. Carrión

through the Gap Management entities in charge of the resources usage. However,
this is not the rule into a real Grid environment, where resources usually are shared
among users and VOs. For this reason, the system needs to estimate the future
resources status for taking into account the resources load which is not submitted
through the meta-scheduling in advance process. So, all the load not submitted
through our system, as resource owners’ load or the rest of jobs submitted by using
other meta-schedulers of the VO, is considered as a load into the resource that must
be predicted.

This meta-scheduling in advance functionality has been implemented as a layer
on top of the GridWay meta-scheduler [2], called Scheduler in Advance Layer (SA-
layer) [16], as Figure 2 depicts. The SA-layer uses functionality provided by Grid-
Way in terms of resource discovery and monitoring, job submission and execution
monitoring, etc.. Also, the information concerning previous jobs executions and
the status of resources and network over time are stored in DB Executions and DB
Resources, respectively.

The usage of the resources is divided into time intervals, named slots. So, the
system has to schedule the future usage of resources by allocating the jobs into
the resources at one specific time (taking one or more time slots). Therefore, data
structures (represented by Data Structure in Figure 2) to keep a trace of the slots
usage are needed. In this work the red-black trees [18] are used as a data structure
with the objective of developing techniques to efficiently identify feasible idle periods,
without having to examine all idle periods. The reason for choosing this kind of
structure is its property which enforce that the longest path from the root to any
leaf is no more than twice as long as the shortest path from the root to any other
leaf in that tree. So, the tree is roughly balanced, and as a result of that, inserting,
deleting and finding values require worst-case time proportional to the height of the
tree (O(logn)). The idea of using red-black trees was firstly proposed by Castillo
et al. [18]. Nevertheless, their proposal does not take into account the performance
fluctuation. Moreover, authors of [18] assume that users have prior knowledge on
the duration of jobs, which is not necessarily true in a real grid. Our work does
not depend on such assumption, so there is a necessity of developing algorithms for
estimating job durations into resources (Predictor in Figure 2), and consequently,
to infer how many slots a job will need to be executed in a certain resource.

3.1 Job Completion Time Predictions

The different performance of Grid resources makes rather difficult to obtain pre-
dictions about jobs durations into resources. What is more, the job performance
characteristics may vary for different applications and from time to time. Due to
these facts, it is needed to estimate the future status of resources and taking it
into account, estimating the time needed to complete the job in a resource at the
target time interval. With the objective of making those predictions as accurate
as possible, they are calculated by estimating the execution time of the job and
the time needed to complete the transfers separately. To do that, the system takes

QoS Provisioning within SLA-Based Grid Environments 79

SCHEDULER IN ADVANCE LAYER

GRIDWAY
META-SCHEDULER IN

ADVANCE

MANAGEMENT

GAP

MANAGEMENT

PREDICTOR

SERVICE

LEVEL

AGREEMENT

DB Resources

DB Executions

Data Structure

USER

R E S OUR C E ’S

TRUST

JOB

RESCHEDULER

SLA MANAGER

Fig. 2. The Scheduler in advance layer (SA-layer)

into account the characteristics of the jobs, the power and usage of the CPU of the
resources and the network status. To this end, our system implements a technique
based on an Exponential Smoothing function which calculates the future status of
the resource CPUs and the future status of the network links. For more information
about this function see [30].

Taking into account the information about Grid status, an estimation of the
execution time is calculated using information of previous executions, as depicted
in Algorithm 1. This algorithm uses all the execution times records in the database
(which are stored in DB Executions) for the application app in a resource Ri to cal-
culate the mean execution time for app in Ri – this includes execution and queueing
times (line 8). After that, the prediction on the future CPU status of each resource
is calculated by means of an exponential smoothing function (line 9). Finally, the
mean execution time is tuned by using the prediction about the future CPU status
of each resource (line 10). The way of calculating the transfer times is pretty similar.
The mean bandwidth predicted for the time period between the job start time and
its deadline is calculated through an exponential smoothing function. Then, using
this information along with the total number of bytes to transfer, the time needed
to complete the transfers is estimated.

Finally, the predictions obtained are weighted taking into account the trust into
the resources chosen. This implementation is explained in Algorithm 2. With the
estimations on execution and transfer times and the information about trust in re-
sourceRi, labelled as RT (Ri), the execution time is tuned (line 12) and an estimation
for the total completion time of the job, JTRi

, is calculated (line 14).

The trust on resources is computed as Equation (1) denotes:

RT (Ri) =

∑n
j=(n−N)

(

Estimated (j,i) − Real (j,i)
)

N
(1)

80 J. Conejero, L. Tomás, B. Caminero, C. Carrión

where Estimated(j,i) is the job completion time estimation made for the j execu-
tion in the resource Ri; and Real(j,i) is the real completion time of a job j in the
resource Ri. The output of this function is the mean of the errors made in those N
predictions and it is used to tune the prediction made for the job execution times
in that resource. As a result, the confidence in the estimations depends on how
trustworthy is the resource where the job will be run. The benefits of tuning the
obtained prediction by using this trust factor were evaluated in [16] highlighting
the usefulness of this approach. So, now we are mixing the estimation techniques
presented in [16] and [30] to obtain a more accurate prediction.

Algorithm 1 Estimation of execution time (ExecT Estimation)

1: Let R = set of resources known to GridWay {R1, R2,. . . ,Rn}
2: Let app the job to be executed
3: Let initT the start time of the job
4: Let d the deadline for the job
5: Let ExecutionTime(app, Ri)j the j execution time for the application app in the

resource Ri

6: Let ES cpu(DB ResourcesRi
, initT, d) the exponential smoothing function that

calculates the percentage of free CPU in resource Ri between time initT and d

7: Let CPU free(Ri, initT, d) the percentage of free CPU in the resource Ri from
time initT to time d

8: ExecutionTime =

∑n

j=1
ExecutionTime(app,Ri)j

n

9: CPU free(Ri, initT, d) = ES cpu(DB ResourcesRi
, initT, d)

10: ExecutionTime = ExecutionTime ∗ (2− CPU free(Ri, initT, d))
11: return ExecutionTime

Algorithm 2 Job Completion Time Estimation
1: Let Ri = a resource
2: Let app = the job to be executed
3: Let initT = the start time of the job
4: Let d = the deadline for the job
5: Let sizeIN = the number of input bytes to be transferred
6: Let sizeOUT = the number of output bytes to be transferred
7: for each Ri having a gap do
8: Prolog = TransT Estimation(Ri, initT, d, sizeIN)
9: Epilog = TransT Estimation(Ri, initT, d, sizeOUT)

10: ExecT = ExecT Estimation(Ri, app)
11: if RT (Ri) < 0 then
12: ExecT = ExecT + |RT (Ri)|
13: end if
14: JTRi

= Prolog + ExecT + Epilog
15: end for

QoS Provisioning within SLA-Based Grid Environments 81

It is important to highlight that predictions are only calculated when a suitable
gap has been found in the host. In this way there is no need to calculate the
completion times for all the hosts in the system – which would be quite inefficient.
On the other hand, when a resource suddenly quits the system (e.g. the resource
fails or it is shut down), the jobs scheduled on it (including currently running jobs)
have to be reallocated to other hosts. The way how jobs are rescheduled is the same
as when they were first submitted to the system. This feature is very important
in Grids since resources may join and leave the Grid at any time, and failures of
resources are the rule rather than the exception. This task is performed by the “Job
Rescheduler” module (see Figure 2). Finally, the jobs that are able to manage this
layer are simple jobs; but dealing with workflows and pilot jobs is about our future
work.

4 SERVICE LEVEL AGREEMENTS (SLAS)

Once the execution of the job may be ensured by the system with enough accu-
racy, the next step to address is the communication with the user in order to reach
agreements for executing his/her jobs. This process is carried out through Service
Level Agreements (SLAs). The SLA concept within Grid computing is defined as
a contract between user and service provider. On this contract, the expectations,
obligations and legal implications are explicitly defined [3]. So, it can be said that
the QoS that the user expects to receive is represented on each SLA. Furthermore,
SLAs are the main mechanism to improve the commercial expansion of Grid com-
puting due to their support for pay-per-use models and the fact of being a legal
statement [31]. Nowadays, these points are very important because of the business
interest on exploiting Grid computing.

Formally, the use of SLAs enforces the relationship between user and service
provider in two ways: as a legal statement that must be accomplished and as
an agreement that can be negotiated. Negotiation implies that the service provider
has the opportunity to decide in advance if the user requirements can be fulfilled
and if possible, to negotiate with it to reach a better agreement. Moreover, the
use of SLAs improves the interoperability among Grids and from users to manage
multiple Grids; but this can only be a reality if a robust and realistic standard is
applied.

Nowadays, the most important and widely used standard within SLAs is the
WS-Agreement. The last version of its specification was released in March 2007 [5],
and with it, all the aspects related to the creation, structure and SLA management
were defined. WS-Agreement defines a basic scheme for the agreements as Figure 3
illustrates. Each agreement has a name identifier and a context. In the context,
all the information about the document is defined, like service provider informa-
tion. The terms block consists on two subblocks: the first one, known as service
terms, has the information relative to the services/resources that are going to be pro-
vided (e.g. CPU count, CPU architecture, RAM amount, etc.); and the second one,

82 J. Conejero, L. Tomás, B. Caminero, C. Carrión

known as guarantee terms, has the service level that must be guaranteed for each
service/resource of the service terms (e.g. 2 (CPU count), x86 64 (CPU architec-
ture), 2GB (RAM), etc.). Finally, the creation constraints block is used for setting
limitations on a negotiation and this block can only be defined on the template. On
the negotiation process it is not used.

Fig. 3. SLA structure

In January 2011 a new revision of the WS-Agreement was released [22]. In
this revision, an extension of the negotiation protocol defined on the first release
is presented. The negotiation protocol previously defined on WS-Agreement only
contemplates a simple negotiation workflow, where the user requests one template
or more, fills it with the requested QoS and sends it back to the service provider,
which accepts or rejects the SLA; but with the recent extension (see Figure 4),
renegotiation is available through a loop between the user and service provider
before an offer is committed. This allows to achieve a better agreement for both
participants.

The definition of the terms in every SLA is not defined in the WS-Agreement
specification, so their definition is left to the service provider, who is in charge of
specifying the terms for its own needs. This flexibility of the WS-Agreement speci-
fication lets the service provider define the terms related to hardware needed, time
restrictions or job related restrictions. These terms can be very numerous and differ-
ent, but there are several ones that may appear: related to the hardware needed (like

QoS Provisioning within SLA-Based Grid Environments 83

Loop

(0...n)

User Service Provider

Template Request

(Template/s)

Create a

negotiation

offer based

on a

Template

Send the negotiation offer

Check the

Negotiation

offer

Checked negotiation offer

Send final offer

Decide to

Accept or

Reject the

offer

ACK (EPR) / Reject message

Fig. 4. WS-Agreement negotiation protocol

number of CPUs or amount of RAM among others), and more important, related
to time restrictions. These restrictions often appear as start-time and duration (or
deadline) of a job; but it is possible to define new terms to improve the knowledge
of the jobs and to exploit them into the meta-scheduling process.

For this purpose, each SLA submitted to this framework should follow the WS-
Agreement specification. So, the service terms specified on each SLA are the job
and execution parameters needed for the meta-scheduling process (see Figure 3).
These terms include: job (app, in file), start-time (t s) and deadline (d). The name
block only specifies the agreement name for a better human identification while the
context block contains two main parameters: template-id for internal identification
and service provider for service provider name identification. This structure is open
for future term and context parameter extension. Finally, creation constraints are
not expected.

This framework implements the WS-Agreement specification and it is possible
to interact with it through a web portal (see Figure 5). This portal offers the
main fields to fill from a template. Once submited, the information is converted to

84 J. Conejero, L. Tomás, B. Caminero, C. Carrión

Fig. 5. SLAs web portal

an offer and sent to the SLA manager. The result of the request is shown to the user
through the portal, and if the submission has been succesfull the EPR is returned.
SLA monitoring and the inclusion of the negotiation extension represents the next
milestones of our work.

There are several advantages that emerge from the use of SLAs into our system
and more specially from the implantation of the WS-Agreement specification. First
of all, it represents a formalization of the job submission process. Moreover, they
are a mechanism for a formal representation of the temporal restrictions that the
user sets and that our Grid system has to respect.

Finally, SLAs are XML format messages (as specified in WS-Agreement), so
they can be easily handled within Web environments. Therefore, technologies such
as Gridsphere [32] can be exploited for the Web environment development. This
way, the complexity of the system is hidden to the user, who has the ability of
interacting with the Grid through a Web portal by filling the jobs to be executed
and their requirements. Then, this information is translated to a SLA and sent to
the job submission process in an easy and systematic way.

5 CONCLUSIONS AND FUTURE WORK

Several research works aim at providing QoS in Grids by means of advanced reser-
vations, albeit making reservations of resources is not always possible in this kind
of scenario. So, this paper proposes a SLA-based framework to perform meta-
scheduling in advance (first step of the reservation in advance process) to provide
QoS to Grid users. Nonetheless, this type of scheduling requires to estimate whether
a given application can be executed before the deadline specified by the user. So,

QoS Provisioning within SLA-Based Grid Environments 85

this requires to tackle many challenges, such as predicting the jobs completion time
into the resources.

For this reason, the system is concerned with the dynamic behaviour of the Grid
resources, their usage, and the characteristics of the jobs. Furthermore, this system
takes into account the accuracy in the recent predictions for each resource in order
to calculate a resource trust.

Moreover, a SLA manager is implemented to deal with the user interaction
and to enable QoS agreements between both of them. This module manages the
communication between the system, by interacting with SA-Layer and the users, and
makes possible to provide QoS to the users in a contractual way (through SLAs).
Furthermore, each SLA can specify more job related information that can be used
in the meta-scheduling process than usual job submission.

One interesting guideline for future research is the development of techniques
to perform better estimations for the transfer times. For this reason, it is a good
point to try to reserve network bandwidth when and where this could be possible.
Moreover, work on developing algorithms to schedule data as another resource is
also considered for future research. Finally, another issue that can be addressed
is the improvement of the SLA manager to make more efficient the scheduling by
taking into account the associated costs, such as reducing the wasted energy.

Acknowledgements

This work was supported by the Spanish MEC and MICINN, as well as European
Commission FEDER funds, under grants CSD2006-00046, TIN2009-14475-C04 and
through a FPI scholarship asociated to TIN2009-14475-C04-03 project. It was also
partly supported by JCCM under grant PII1C09-0101-9476.

REFERENCES

[1] Schwiegelshohn, U. et al.: Perspectives on Grid Computing. Future Generation
Computer Systems, Vol. 26, 2010, No. 8, pp. 1104–1115.

[2] Huedo, E.—Montero, R. S.—Llorente, I.M.: A Modular Meta-Scheduling Ar-
chitecture for Interfacing with Pre-WS and WS Grid Resource Management Services.
Future Generation Computing System, Vol. 23, 2007, No. 2, pp. 252–261.

[3] Padgett, J.—Djemame, K.—Dew, P.: Grid-Based SLA Management. In Proc.
of the European Grid Conference (EGC), Amsterdam, The Netherlands, 2005.

[4] Stantchev, V.—Schröpfer, C.: Negotiating and Enforcing QoS and SLAs in
Grid and Cloud Computing. In Proc. of the 4th Intl. Conference on Advances in Grid
and Pervasive Computing (GPC), Geneva, Switzerland, 2009.

[5] Andrieux, A. et al.: Web Services Agreement Specification (WS-Agreement). Tech.
report, 2007. Availaible on: https://forge.gridforum.org/projects/graap-wg/.

[6] AssessGrid. Availaible on: http://www.assessgrid.eu.

[7] EU-Brein. Availaible on: http://www.eu-brein.com/.

86 J. Conejero, L. Tomás, B. Caminero, C. Carrión

[8] SLA@SOI. Availaible on: http://sla-at-soi.eu/.

[9] Vázquez, C.—Huedo, E.—Montero, R. S.—Llorente, I.M.: Federation of
Teragrid, EGEE and OSG Infrastructures Through a Metascheduler. Future Genera-
tion Computer Systems, Vol. 26, 2010, No. 7, pp. 979–985.

[10] Roy, A.—Sander, V.: Grid Resource Management. Chapter GARA: A Uniform
Quality of Service Architecture. pp. 377–394. Kluwer Academic Publishers, 2003.

[11] Siddiqui, M.—Villazón, A.—Fahringer, T.: Grid Capacity Planning with
Negotiation-Based Advance Reservation for Optimized QoS. In Proc. of the 2006
Conference on Supercomputing (SC), Tampa, USA, 2006.

[12] Waldrich, O.—Wieder, Ph.—Ziegler, W.: A Meta-Scheduling Service for Co-

Allocating Arbitrary Types of Resources. In Proc. of the 6th Intl. Conference on
Parallel Processing and Applied Mathematics (PPAM), Poznan, Poland, 2005.

[13] Dobber, M.—van der Mei, R.—Koole, G.: A Prediction Method for Job Run-
times on Shared Processors: Survey, Statistical Analysis and New Avenues. Perfor-
mance Evaluation, Vol. 64, 2007, No. 7-8, pp. 755–781.

[14] Dinda, P. A.: The Statistical Properties of Host Load. Scientific Programming,
Vol. 7, 1999, No. 3-4, pp. 211–229.

[15] Jin, H.—Shi, X.—Qiang, W.—Zou, D.: An Adaptive Meta-Scheduler for Data-
Intensive Applications. Intl. Journal of Grid and Utility Computing, Vol. 1, 2005,
No. 1, pp. 32–37.

[16] Tomás, L.—Caminero, A.—Carrión, C.—Caminero, B.: Network-Aware
Meta-Scheduling in Advance with Autonomous Self-Tuning System. Future Genera-
tion Computer Systems, Vol. 27, 2011, No. 5, pp. 486–497.

[17] Sulistio, A.—Cibej, U.—Prasad, S.K.—Buyya, R.: GarQ: An Efficient
Scheduling Data Structure for Advance Reservations of Grid Resources. Intl. Journal
of Parallel Emergent and Distributed Systems, Vol. 24, 2009, No. 1, pp. 1–19.

[18] Castillo, C.—Rouskas, G.N.—Harfoush, K.: On the Design of Online
Scheduling Algorithms for Advance Reservations and QoS in Grids. In Proc. of the
Intl. Parallel and Distributed Processing Symposium (IPDPS), Los Alamitos, USA,
2007.

[19] Theilmann, W.—Baresi, L.: Multi-Level SLAs for Harmonized Management in
the Future Internet. Chapter Towards the Future Internet. pp. 193–202, IOS Press,
2009.

[20] Brandic, I. et al.: Advanced QoS Methods for Grid Workflows Based on Meta-
Negotiations and SLA-Mappings. In Proc. of the 3rd Workshop on Work ows in Sup-
port of Large-Scale Science, Austin, USA, 2008.

[21] Ejarque, J. et al.: Exploiting Semantics and Virtualization for SLA-Driven Re-
source Allocation in Service Providers. Concurrency and Computation: Practice and
Experience, Vol. 22, 2010, No. 5, pp. 541–572.

[22] Waeldrich, O. et al.: WS-Agreement Negotiation Ver. 1.0. Tech. report, 2011.

[23] Davide Lamanna, D.—Skene, J.—Emmerich, W.: Slang: A Language for Defin-
ing Service Level Agreements. In Proc. of the Intl. Workshop of Future Trends of
Distributed Computing Systems, Los Alamitos, USA, 2003.

QoS Provisioning within SLA-Based Grid Environments 87

[24] WSLA: Web Service Level Agreements. Availaible on: http://www.research.ibm.

com/wsla/.

[25] Parkin, M.—Badia, R.M.—Martrat, J.: A Comparison of SLA Use in Six of
the European Commissions FP6 Projects. Tech. report TR-0129, 2008.

[26] WSAG4J – WS-Agreement Framework for Java. Availaible on: http://packcs-e0.
scai.fraunhofer.de/wsag4j/.

[27] NextGrid – Architecture for Next Generation Grid projects. Availaible on: http:

//www.nextgrid.org/.

[28] Caminero, A.—Rana, O.—Caminero, B.—Carrión, C.: Network-Aware
Heuristics for Inter-Domain Meta-Scheduling in Grids. Journal of Computer and Sys-
tem Sciences, Vol. 77, 2011, No. 2, pp. 262–281.

[29] di Stefano, A.—Morana, G.—Zito, D.: A P2P Strategy for QoS Discovery
and SLA Negotiation in Grid Environment. Future Generation Computer Systems,
Vol. 25, 2009, No. 8, pp. 862–875.

[30] Tomás, L.—Caminero, A.—Carrión, C.—Caminero, B.: Exponential
Smoothing for Network-Aware Meta-Scheduler in Advance in Grids. In Proc. of the
6th Intl. Workshop on Scheduling and Resource Management on Parallel and Dis-
tributed Systems (SRMPDS), San Diego, USA, 2010.

[31] Armstrong, D.—Djemame, K.: Towards Quality of Service in the Cloud. In Proc.
of the 25th UK Performance Engineering Workshop, Leeds, UK, 2009.

[32] Gridsphere. Availaible on: http://www.gridsphere.org/.

Javier Conejero is a Ph.D. student in computer science at the
University of Castilla-La Mancha, Spain. He received his B.E.
and M. E. in computer science from the University of Castilla-La
Mancha. He worked at CERN for one year in WLCG software
development and management. He has been working with Ser-

vice Level Agreements within Grid environments since 2010. His
current research interests include QoS with SLAs in Grid and
Cloud environments.

Luis Tom�as is a Ph.D. student in computer ccience at the Uni-
versity of Castilla-La Mancha, Spain. He received his B.E. and
M.E. in Computer Science from The University of Castilla-La
Mancha (Albacete, Spain) in 2007 and 2009. He has been work-
ing with resource management and job scheduling for Grid en-
vironments since 2007. His current research effort is on efficient
meta-scheduling in advance in Grids to provide QoS to users.
His work considers QoS in terms of completion time guarantees.

88 J. Conejero, L. Tomás, B. Caminero, C. Carrión

Blanca Caminero is an Associate Professor of computer archi-

tecture and technology at the Computing Systems Department
(The University of Castilla-La Mancha). She holds a Ph.D. De-
gree in Computer Science from The University of Castilla-La
Mancha, and her current research interests are in QoS support
and meta-scheduling in Grids and Clouds. She is a member of
the IEEE.

Carmen Carri

�

on is an Associate Professor of computer archi-
tecture and technology at the Computing Systems Department
at The University of Castilla-La Mancha. She holds a Ph.D.
Degree in Physics from The University of Cantabria, and her
interests include meta-scheduling and QoS in Grids and Clouds.

