
Computing and Informatics, Vol. 31, 2012, 119–134

TRANSPARENT ACCESS TO SCIENTIFIC
AND COMMERCIAL CLOUDS FROM THE KEPLER
WORKFLOW ENGINE

Marcus Hardt, Thomas Jejkal

KIT, Karlsruhe Institute of Technology

Kaiserstrasse 12

76131 Karlsruhe, Germany

e-mail: hardt@kit.edu

Isabel Campos, Enol Fernandez

CSIC, Spain

Adrian Jackson, Michele Weiland

EPCC, United Kingdom

Daniel Nielsson

Chalmers, Sweden

Bartek Palak, Marcin P lociennik

PSNC, Poland

Abstract. This paper describes the architecture for transparently using several dif-
ferent Cloud Resources from with the graphical Kepler Worklfow environment. This
architecture was proven to work by implementing and using it in practice within the



120 M. Hardt, Th. Jejkal, I. Campos, E. Fernandez, A. Jackson et al.

FP7 EUFORIA project. The clouds supported are the Open Source cloud Open-

NEbula (ONE) environment and the commercial Amazon Elastic Compute Cloud
(EC2). Subsequently, these clouds are compared regarding their cost-effectiveness,
which covers a performance examination but also the comparison of the commercial
against a scientific cloud provider.

Keywords: Cloud, Amazon, EC2, AWS, Kepler, workflow, OpenNEbula, ONE

1 INTRODUCTION

This paper is based on work done within the EUFORIA project, which is funded
through the Research Infrastructures initiative of the 7th Framework Programme of
the European Commission, grant agreement No. 211804.

The goal of the work presented in this paper was to enable end-user scientists to
easily allocate enough computers to run their code on. It was therefore mandatory
to hide the details of the cloud from the user. This paper describes our solution
which accomplishes this.

These considerations lead to the design and implementation of an architecture
which integrates cloud resources to be available for the computations of our users.
The designed architecture includes access to the cloud resources via the graphical
workflow engine Kepler [4].

Resources in terms of this paper are those provided by cloud infrastructure
providers (IAAS) such as Amazon Web Services (AWS). Higher level cloud services
(e.g. PAAS, SAAS) where not within scope.

A second goal of this work was to find out whether it is financially more attractive
to run commercial cloud services in a scientific computer centre or to use commercial
cloud offerings. We have therefore conducted a cost comparison between Amazon
EC2 and a large scientific compute centre. Furthermore, benchmarks have been
used to judge the difference in performance between both providers.

This paper starts with an introductory evaluation in Section 2 of cloud infra-
structures, before the architecture is described in detail in Section 3. Section 4
analyses in detail the cost that emerge when running a cloud centre and compares
the obtained figures with the prices charged by Amazon. The paper finishes with
a brief evaluation on benchmark performance in Section 5.

2 EVALUATION OF CLOUD INFRASTRUCTURES

The recommendation given to EUFORIA [3] was targeted at trying out an Infra-
structure as a Service (IaaS) provider, because platform and software (PaaS and
SaaS) are likely too high-level for being integrated on the same level as grid and
HPC.



Transparent Cloud Access 121

Choosing the cloud provider was not very easy, as many commercial cloud
providers exist. Typically each provider requires the user to learn and use their
specific interface. This is typically a web GUI which is often supplemented with
a vendor specific application programmers interface (API).

Implementing against such an API leads to the so called “vendor lock-in”,
which describes the situation that the user has implemented his access to the
provider so specific that s/he cannot change the provider, without reinvesting in
a re-implementation of his/her software. To avoid this, all vendors would have
to agree upon one standardised interface. Among others, the UK based Elas-
ticHosts (http://elastichosts.com) was actively pursuing the standardisation
of the open, OGF-standardised Open Cloud Computing Interface (OCCI) (http:
//occi-wg.org) protocol. OCCI is also supported by the OpenSource OpenNEbula
(ONE) (http://opennebula.org) [1] cloud middleware.

However, any serious cloud implementation should be comparable to the offer-
ings provided by AmazonWeb Services (AWS) (http://aws.amazon.com). Amazon
is the biggest and most present IAAS provider. Thus, it serves as a de-facto stan-
dard for cloud computing interfaces. Futhermore, any serious comparison has to be
comparable with Amazon.

We therefore decided to take the middle way of using the AWS interface on
the one hand and to develop against the provided subset of the AWS interface as
supported by an Open Source middleware.

Based on a previous evaluation by KIT of Amazon-compatible OpenSource reim-
plementations Eucalyptus and OpenNEbula, we have decided to use the AWS inter-
face of OpenNEbula as the reference development platform. ONE is the open-source
part of the EC funded RESERVOIR project. Using its AWS interface ensures our
implementation can directly be used with Amazon resources. Anticipating one result
of the cloud pilot, we can say that our implementation does in fact work seamlessly
with either ONE or Amazon resources.

3 ARCHITECTURE

This section details the architecture and the considerations made for the imple-
mentation. The architecture was designed with focus on implementing a working
solution rather than a theoretical model. Therefore, the implemented technical fea-
tures are the fundamental ones, leaving space for more advanced ones to be added at
a later stage. The overall architecture is therefore stable to work with and extensible
for future work.

The overall goal of this architecture is to enable end-user scientists to easily
allocate cloud resources that run their code. We have therefore defined the following
cycle which describes responsibilities or roles for the respective steps:

1. Admin provides access to a virtual machine to users.

2. Users install their software and configure the virtual machine.



122 M. Hardt, Th. Jejkal, I. Campos, E. Fernandez, A. Jackson et al.

3. Admin defines modified virtual machine image as new master image.

4. User includes the cloud Kepler actor in his workflow. Every time the actor is
activated, it triggers all actions necessary to run the code on a newly instantiated
VM on the cloud.

3.1 Virtual Machine Considerations

Infrastructure as a Service (IAAS) provides an interface to start virtual machines
(VMs) – not more. We had to make choice on how to run the users codes inside
the virtual machines. Two possible options exist. The obvious solution is to follow
the grid paradigm and to start a cluster of VMs. This cluster can be used with the
existing grid interfaces to submit the jobs. The main problem with this “grid on
cloud” solution is that the somewhat traditional idea of grid computing would be
translated to the cloud. Furthermore, a cluster service does already exist at Amazon
and can be included into our approach.

We therefore chose to start a VM in such a way that it does not require further
instructions during runtime. We pass a set of parameters to the virtual machine
during start-up, including

• the code to run

• parameters

• from where to get input files

• where to store output.

We call this procedure “contextualisation” because it puts the clone of the master
VM into the context in which it runs.

The advantages are that no knowledge about the VM is required during runtime
and that no network connections need to be made to it for successful execution.
For monitoring the VM during development, we have installed a webservice which
provides monitoring information when needed. The user can start many VMs with
different parameters to run his computations. Currently only serial jobs for use cases
like parameter scans are supported.

For the development of the VM, we have created a master-VM, which runs
constantly on the ONE cluster at KIT. This machine is provided for developers and
code owners to interactively log-in so that the EUFORIA developments and the
users’ codes can be deployed and tested. When finished, the master VM holds an
installation of the codes, libraries and tools required by the users.

This setup enables us to start identical copies of the master VM on the ONE
cluster at KIT and at AWS using the same interface, only using different creden-
tials. Currently only one master VM is supported, on which all codes need to be
installed. It is easily possible to add several master VMs, each of which can then
be custom tailored to the requirements of the specific code. This would be required



Transparent Cloud Access 123

to utilise Infiniband-enabled cloud clusters with MPI, which are available at com-
mercial providers. This was out of scope for the pilot project, but will be pursued
in the future.

At the end of a computation, after the code has stored the output at a specified
output location, the VM is shut down.

3.2 Building Blocks

To describe the architecture in more detail, we first need to define a small set of
building blocks or services which will be discussed later on.

Kepler workflow orchestrator: Originally designed to run a user’s workflow on
a local workstation, its capability was extended throughout EUFORIA to submit
jobs to external computing resources, such as grid or HPC. Within the cloud
pilot project this was extended to instantiate a VM on cloud resources and run
the job inside.

Storage Element: This is the place where input files and job outcome are stored.
Currently a grid storage element is used for this, which requires to use the grid
authentication from within a cloud VM to access storage. Cloud storage will be
considered in future works.

Virtual Machines (VMs): All VMs used throughout this paper are based on
one master image on which all required software was preinstalled. The master
image used for this paper is based on a [5] worker node, but any other VM
(including *BSD and Windows) would be possible. Copies of the master node
are instantiated on Amazon or OpenNEbula resources.

Monitoring Service: Keeps information about submitted jobs and the status of
the virtual machines. This is in principle not required and will be omitted in
future versions.

3.3 Usage Scenario

The diagram presented in Figure 1 shows the flow of control and data between the
system components during the execution of a typical usage scenario from specifica-
tion of application and input data to obtaining job outcome.

3.4 Monitoring Service

The Monitoring Service is a simple webservice that stores and provides information
about jobs, including current job statuses. The service intermediates between Ke-
pler actors which run locally on the user’s workstation and the VMs on the cloud
infrastructures. This additional link in our call chain is necessary to work around
several problems:



124 M. Hardt, Th. Jejkal, I. Campos, E. Fernandez, A. Jackson et al.

1. User starts a Kepler workflow on the local workstation.
2. Kepler actor uploads job input files to file storage.
3. Request for VM creation is sent by Kepler actor to the Monitoring Service.
4. Monitoring Service passes a request for VM creation to cloud.
5. Kepler actor starts querying Monitoring Service to track job status
6. Virtual Machine is instantiated
7. Pre-installed scripts set up the job environment based on contextualization data
8. VM starts updating job status on Monitoring Service
9. VM downloads application input data

10. Job performs its execution
11. Job output is uploaded to file storage
12. VM calls Monitoring Service passing “KILL ME” signal
13. Monitoring Service shuts down Virtual Machine
14. Kepler actor downloads job outcome from file storage to the local filesystem

Fig. 1. Usage scenario. The numbers 1–14 indicate the order in which the process is
traversed.

• Often, scientific compute providers block some ports by firewalls. In this case
the Kepler actor cannot communicate with the VM. The VM, however, can still
initiate outgoing connections.

• All monitoring information is pushed by VM, so communication is possible re-
gardless of very restrictive rules defined on firewalls blocking access to cloud
infrastructure.

• We do not have to keep a list of running cloud instances. Existing machines
publish information about their existence. However, for increased robustness we
keep such a list.



Transparent Cloud Access 125

Storing information about jobs and their statuses in a simple data base allows to
shut down VM immediately after job ends or fails. This releases resources (limited
by some cloud providers) and reduces costs (running a VM on commercial cloud
costs money!).

3.5 Integration with Kepler

Fig. 2. Screenshot of the Desktop offered by Kepler

The Kepler workflow orchestrator (Figure 2) provides users with an efficient
and user-friendly Java based interface and workflow engine. This platform has been
chosen as the main interface to project resources in EUFORIA. Within the cloud-
pilot project, Kepler provides the framework for the creation of workflows that
combine developed components in a coherent system. A set of Kepler actors allows
the users to define and run their jobs on available cloud resources. To speed up the
development process, some existing actors are re-used for user authentication, upload
of input files and download of job outcome from file storage. Other actors, specific
for cloud infrastructure, were implemented from scratch (this set of newly created
components incorporates actors for handling job submission and job monitoring).

Kepler hides the complexity of underlying environment, so the user sees no dif-
ference to jobs running locally. To start a particular job the user just specifies
application parameters and input files (that could reside on local file system). Af-
ter launching the workflow, application input is uploaded automatically. The user
could track a job, watching job monitoring information displayed by Kepler. When



126 M. Hardt, Th. Jejkal, I. Campos, E. Fernandez, A. Jackson et al.

workflow ends its execution, job outcome could be found in predefined local folder
on user’s workstation.

4 COST EVALUATION

The aim of this section is to find out if it is financially more attractive to use a com-
mercial cloud service or a scientific computer centre. In terms of a resource provider
the question is, wether it is financially reasonable for a large scientific computer cen-
tre to provide cloud services to its users or to redirect them to commercial offerings.

For this we have defined a use case and calculate how much this would cost,
when running at Amazon (AWS). We compare these prices with a theoretical model
to get a good estimate for the cost and to better understand the Amazon prices.

4.1 Reference Use-Case

To keep the comparison reasonably simple, we decided to define one use-case and
analyse the cost it causes. We consider a parameter scan use-case. This is a ty-
pical use-case which runs for some time and creates some output which is read by
subsequent analysis runs. The use-case consists of a series of independent jobs, of
which many are started. The output is stored for some time before it is retrieved
and deleted. We assume the output needs to be downloaded from the cloud two
times, corresponding to two analysis runs.

Please note that all these figures are purely fictional and do not correspond to
an actual use-case. However, we have to define some ground truth on which a cost
evaluation can be based. Table 1 shows the defined figures.

Number of jobs 1 000

Runtime per job 6 h, 1CPU, (dual core)

Output per job 600MB

Storage time of the output 6 months

Output retrieve count 2

Table 1. Resource requirements of our reference use case. We assume the compute jobs to
be fully independent of each other.

4.2 Amazon Prices

We use official pricing of the Amazon webpage (http://aws.amazon.com/
#lastvisited12/2010). The Amazon “Large Instance type” costs $ 0.38 per hour
and provides 2CPU cores with 7.5GB and 850GB disk storage. The I/O perfor-
mance is not specified, but labelled “high”. External storage (Amazon S3) required
for storing results costs additional $ 0.09 per GB month and data transfer amounts
to $ 0.15 per GB. Please note that we have simplified these figures, which comprise



Transparent Cloud Access 127

some initial free volumes, e.g. the first GB of data transfer is for free. This summary
can be found in the table below (1USD = 0.75 EUR).

Resource Description Total

CPU large instance type per hour 0.29e

Disk disk per GB month 0.07e

Net data transfer per GB 0.11e

Table 2. Cost for computing at the Amazon compute cloud

4.3 Theoretical Cost Model

To get a better understanding on how the background of the pricing, we have built
a model to understand the pricing for CPU, disk and networking. For building
this model many assumptions had to be made. These assumptions are based on a
fictional medium to large scale scientific computer centre. Whenever we were not
sure about assumptions (e.g. the amount of storage disks to be handled by one
administrator), we assumed the value leading to a higher price. Therefore accepting
a higher total price for using the theoretical model, but ensuring a robust statement
in case the model provides a lower price than Amazon. All figures are summarised
in Table 3.

For networking we simply adopted the Amazon pricing.

For CPU we assume a price of 2 000eper core, relating to 4 000e for a dual-
core machine, which is reasonable for a well performing large RAM configuration.
We assume that one administrator can administer 1000 such machines, which is
reasonable in a large datacentre with roughly 5 000 machines. Regarding electricity
the estimate is based on a price of 0.12e/kWh resulting in 1Me per year for
electricity. The model assumes 2Me, because the net-price KIT pays cannot be
assumed in general. Furthermore, the cost for electricity comprises cost for disk
networking and CPUs; we simplified the calculation by assuming the power is used
by only 10 000 cores, therefore accepting a larger value for CPU cost. The same
holds for the building which hosts the infrastructure. We calculate the building
price only as a share of the CPUs and not the disks or network equipment. The
assumption is that a building for 10Me can host 10 000 cores and all network and
storage equipment. The building only lasts for 10 years, therefore a larger value was
accepted for our CPU hours again.

The storage figure is based on the price of a disk as on the internet (1 TB for
100e) and the assumption that one admin is required for 200TB. This assumption
is again based on the KIT data centre, where less than 10 people administer more
than 8 Petabytes.

Since network cost is difficult to estimate, we use the same cost that Amazon
charges.



128 M. Hardt, Th. Jejkal, I. Campos, E. Fernandez, A. Jackson et al.

Resource Position Cost Comment Total Cost

CPU Price per core 2 000e 3 Years lifetime

Admin per hour: 38.75e 1 FTE

2000 Cores/admin

Electricity 2 Me
Year for 10 000 Cores

includes disk

Real estate 10Me holds 10 000 Cores
lasts 10 years 12.97 ct

CPUh

Disk Disk per GB 10 ct 1 Year lifetime

Admin per month: 6 200e 1 FTE

200TB per admin 3.93 ct

GBmonth

Network Data transfer 11.25 ct

GB
Same as AWS 11.25 ct

GB

Table 3. Cost calculation of the three cost factors (CPU, Disk and Network per unit and
time)

4.4 Summary of Cost

Summing up, we can see that Amazon is not really cheap. The theoretical model
causes about two thirds of the Amazon costs. This gap could be attributed to the
fact that we have not considered the cost for cloud software which would have to
be developed before being able to provide the service. However, Eucalyptus and
OpenNEbula are two viable examples for open source solutions that exist and can
be used free of charge.

Resource Amazon Model Factor Total AWS Total Model

EUR per CPU hour 0.2850 0.1297 6 000 1 710.00 778.35

EUR per GB month 0.0675 0.0393 6 000 405.00 236.00

EUR GB transfer 0.1125 0.1125 12 000 1 350.00 1 350.00

3 465.00e 2 364.35e

Table 4. Cost caused by running the defined test-use case. Comparison of the actual cost
that would be caused on the Amazon cloud and the virtual cost according to the
cost model is shown.

We would like to stress again that for the theoretical model we chose to use
higher figures, when unsure. Therefore, we can confirm that it is possible to offer
cheaper cloud services to the scientific community, given a large computer centre is
available.

During the research for the pricing we found one potentially interesting, but
totally different figure for quantifying the value of computation. It uses the amount
of generated papers per energy required to compute the results. NESRC in USA
claims to have achieved 450 publications per MW year in 2009 on their HPC infra-
structure. We are not aware of any comparable figure in this metric, but believe
this is the ultimately correct unit.



Transparent Cloud Access 129

5 BENCHMARKING PERFORMANCE

After finding that it is possible to provide cheaper cloud services than Amazon in
large scientific computer centres, in this chapter we want to understand the differ-
ences in performance. In the nature of European projects this research was carried
out by a different team on different resources. Therefore, this section compares the
Amazon HPC to an HPC Cluster and to a Cray XT4. Please note that different
pricing than that given in the previous section applies to the Amazon HPC cluster.

The virtualization used in modern clouds is generally accepted to add little in
the way of overheads for computation which means that benchmarking the compute
or memory performance of a standard cloud virtual machine will not provide any
interesting information. However, from the point of view of scientific computational
simulation it is interesting to understand the performance which can be obtained
when using cloud services for computation.

5.1 Infrastructure for Benchmarks

5.1.1 Amazon EC2

Amazon’s cloud infrastructure, the Elastic Compute Cloud (EC2), offers customers
the opportunity to buy compute time on virtualised resources. Amazon offers a wide
range of different types of compute images at different prices, from basic, low-
memory images at $ 0.16 an hour, to specialized high-performance images at $ 1.60
per hour.

For the work undertaken in this study, which aims at testing the suitability of
EC2 for parallel computation, the high-performance Cluster Compute images were
used. Each node consists of two 2.3GHz quad-core Intel Nehalem processors with
the nodes connected using 10 Gigabit Ethernet.

5.1.2 Comparison HPC Platform: HECToR

To be able to compare the Amazon EC2 HPC performance we needed a traditional
HPC system. For these benchmarks we used HECToR, the UK’s national high-
performance computing service. It is used for a wide range of application areas by
scientists from across the UK (and Europe). The system currently consists of two
different architectures (both Cray’s) – for the performance tests in this report the
XT4 part of the system was used. The Cray XT4 has two dual-core AMD Opteron
2.3GHz nodes with 8GB RAM.

5.2 Parallel Benchmark: The IMB Suite

A single Amazon virtual machine instance only offers access to 8 compute cores (all
attached to the same shared memory), so in order to run parallel jobs with more
than 8 processes it is necessary to start multiple instances and enable communication



130 M. Hardt, Th. Jejkal, I. Campos, E. Fernandez, A. Jackson et al.

between them. One of these instances should act as the master, the remaining ones
are treated as compute instances.

The Intel MPI Benchmarks (IMB) are a widely used set of benchmarks that
are used to test some of the most important MPI features on a parallel system.
They provide an overview of the performance in terms of communication bandwidth
and latency. The IMB suite consists of three parts: IMB-MPI1, which addresses
the classical message-passing functionalities; IMB-EXT, which focuses on single-
sided communication (part of the MPI2 standard); and IMB-IO, which looks at the
performance of parallel reads/writes. In this study, we concentrate on the standard
message-passing performance, as well as some basic MPI-IO results.

Fig. 3. Timings for the PingPong benchmark on EC2 and XT4. When running the Ping-
Pong benchmark with both processes being placed on the same node, the performance
exhibited by both EC2 and XT4 is comparable. For message larger than 128 Bytes,
EC2 shows better performance. This is attributed to the difference in the architecture
and size of the nodes between the two systems: an XT4 node consists of a quad-core
AMD Opteron processor with 8GB of main memory, whereas an EC2 node consists
of two quad-core Intel Nehalem processors with a total of 23GB of memory.

PingPong The most basic test to measure communication overheads and
throughput capabilities is the PingPong benchmark: a single message of a given
size (#Bytes) is passed between two processes using MPI Send and MPI Receive.
Figure 3 shows the timings of the PingPong benchmark on both EC2 and XT4. The
graph shows three different types of runs: the intra node measurements show the
performance of the benchmark between processes on the same node; for the inter
node measurements, the two processes are placed on a different node each, forcing



Transparent Cloud Access 131

the benchmark to use the interconnect; the multi inter node test runs multiple sets
of PingPong benchmarks, with each pair of processes placed on different nodes using
an 8× 2 mapping.

This picture changes however once the benchmark is forced to run across two
nodes and use the systems’ network: the XT4 is faster by an order of magnitude
and the benefits of a high-performance interconnect becomes clear. The “multi”
benchmarks are used to simulate a system under a full workload and all resources
are used, so any artificial performance benefits from access to large amounts of main
memory disappear.

Fig. 4. Throughput levels (in Mbytes per second) for the PingPong benchmark. The graph
confirms the performance picture given by the timings and shows, perhaps more
clearly, how a simulated full workload affects the performance. Throughput tops out
at 85MB/s on EC2, whereas 475MB/s are achieved on the XT4.

Alltoall While the PingPong benchmark is an example of point-to-point com-
munication, the Alltoall benchmark tests collective communication: every process
sends N bytes to all other processes and receives N bytes from those processes in
return (i.e. a total of N bytes ·#processes). The benchmark uses the MPI Alltoall
function.

On 16 cores, both systems are forced to use the interconnect – here, the superior
network on the XT4 makes a significant difference (up to an order of magnitude)
for all message sizes.



132 M. Hardt, Th. Jejkal, I. Campos, E. Fernandez, A. Jackson et al.

Fig. 5. Screenshot of the Desktop offered by Kepler

Fig. 6. Timings of the Alltoall benchmark from 2 to 16 cores, comparing EC2 and XT4.
For 2 and 4 cores, the performance difference is relatively small, and for small message
sizes, EC2 outperforms the XT4 – again, this is not surprising as the benchmarks run
internal to the nodes and the more powerful Intel CPU will give EC2 the marginally
better performance. For 8 cores (which fit inside a node on EC2, but across two nodes
on the XT4), the performance benefit of the intra-node communication becomes even
clearer for messages up to 16KB where the timing difference is nearly an order of
magnitude. However, for larger messages this benefit, which stems from the intra-
node cache efficiency, mostly disappears.

Again, it is easy to spot the performance benefits of intra-node communication:
for 2 and 4 cores, there is not much difference in performance between EC2 and
the XT4, and on 8 cores, EC2 is slightly faster. However, the big difference again
lies in the performance of those benchmarks that forced the use of the interconnect.
The time to call a barrier jumps from 6µs on 8 cores to 170µs on 16 cores on EC2,
where on the XT4 the difference is 11 s on 8 cores versus 19µs on 16 cores.

5.3 Benchmarking Conclusions

From the benchmarks we have run we can see that whilst the Amazon compute
cloud does provide resources for large scale parallel programs they do not match the
current performance available from existing HPC machines. The cost is comparable
between Amazon and the XT4 for compute resources (Amazon is $ 1.60 per node
per hour and the XT4 would be approximately $ 1.70 per node per hour). However,
the cost associated with the XT4 covers all aspects of the service (compute, storage,



Transparent Cloud Access 133

network data transfer, etc.) whereas Amazon has extra costs for data storage and
data transfers across the network.

We can also see that clouds like the NGS cloud (an academic cloud) with shared
resources performance can be significantly impaired for serial applications when
compared with what can be obtained using local compute servers or resources.

Another aspect which should be considered is the effort currently required by
users to access and run on the cloud. The parallel nodes on Amazon required extra
setup to enable large (more that 8 core) parallel jobs to be run. Furthermore, both
clouds required significant work on the virtual images before they could be used
for the application or low-level benchmarks. The Amazon clouds were reasonably
straightforward but still required libraries to be compiled and installed on them.
The NGS cloud virtual images required much more work to configure and set up
the disk space and other aspects of the operating system. Once this work has been
done it can be re-used but this work cannot be expected of general computational
simulation scientists.

6 CONCLUSIONS

In this paper we have described and successfully implemented an architecture that
enabled us to use cloud resources from within the Kepler [4] workflow environment.
Both scientific and commercial cloud infrastructures can be allocated transparently
using our solution.

This success leads to the question which resources should be allocated with best
efficiency. We have therefore carefully calculated the cost that should be charged by
a non-profit scientific computer centre and compared these with the cost charged by
Amazon. This comparison indicates that a scientific computer centre can operate
at two thirds of the cost that Amazon charges.

This might be attributed to a difference in performance between the two offer-
ings. We have therefore conducted some benchmark runs which indicate that the
price charged at Amazon is not justified by better performance but rather by easier
usage and by the amount of available tools and features.

6.1 Future Work

Encouraged by the results of this paper, we plan to improve the cloud inclusion
into Kepler by extending the solution with currently missing features. We envisage
to support the deployment and develpoment cycle of sourcecode. The goal is that
end users can develop on their local computer. Their output can be automatically
syncronised to the cloud instances at startup.

On the infrastructure side, we plan to collaborate with EU projects to sustain-
ably set up scientific cloud services.



134 M. Hardt, Th. Jejkal, I. Campos, E. Fernandez, A. Jackson et al.

REFERENCES

[1] Sotomayor, B.—Montero, R. S.—Llorente, I. M.—Foster, I.: An Open
Source Solution for Virtual Infrastructure Management in Private and Hybrid Clouds.
Preprint ANL/MCS-P1649-0709, 2009, http://www.mcs.anl.gov/uploads/cels/

papers/P1649.pdf.

[2] Nurmi, D.—Wolski, R.—Grzegorczyk, Ch.—Obertelli, G.—Soman, S.—

Youseff, L.—Zagorodnov, D.: CCGRID ’09 Proceedings of the 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid table of contents 2009,
pp. 124–131, IEEE Computer Society Washington, DC, USA, 2009, ISBN 978-0-7695-
3622-4, doi 10.1109/CCGRID.2009.93.

[3] Stotzka, R.—Morales-Ramos, E.—Aspnäs, M.—Aström, J.—

Cárdenas-Montes, M.—Castejón, F.—Cela, J. M.–Coster, D. P.—

Gómez-Iglesias, A.—Guillerminet, B.—Hammad, A.—Hardt, M.—

Kos, L.—Piccioni-Koch, D.—Campos Plasencia, I.—Plociennik, M.—

Poghosyan, G.—Smith, L.—Sonnendrcker, E.—Strand, P.—

Westerholm, J.: EUFORIA – Simulation Environment for ITER Fusion
Research. 34th Euromicro Conference, Software Engineering and Advanced Ap-
plications, Parma, Italy, September 2–5,2008, ISBN 978-3-902457-20-3. DOI:
10.1109/SEAA.2008.11, http://www.euforia-project.eu/.

[4] McPhillips, T.—Bowers, S.—Zinn, D.—Ludaescher, B.: Scientific Work-
flow Design for Mere Mortals. Future Generation Computer Systems, Vol. 25, 2008,
pp. 541–551.

[5] Cecchi, M.—Capannini, F.—Dorigo, A.—Ghiselli, A.—Giacomini, F.—

Maraschini, F.—Marzolla, M.—Monforte, S.—Pacini, F.—

Petronzio, L.—Prelz, F.: The gLite Workload Management System.
Advances in Grid and Pervasive Computing, LNCS Springer Berlin 2009,
http://dx.doi.org/10.1007/978-3-642-01671-4_24.

Marcus Hardt received his Diploma in Physics at the RWTH
in Aachen in 2001. He is the author or co-author of around
20 papers in peer-reviewed conferences and journals. He was
working as founding member of WebSmart Technology GmbH
and IT freelancer between 1999 and 2002. Since 2002 he has
been working as a scientist at Karlsruhe Institute of Technology.
In several EU funded projects (CrossGrid, int.eu.grid, Euforia)
he managed the software deployment and configuration on the
Europe-wide DCI and was responsible for the automated release
building infrastructure. His research interest also covers ultra-

sound computer tomography, where he is contributing to reconstructing ultrasound signals
aiming to compute 3D mammograms.


