Computing and Informatics, Vol. 31, 2012, 149-160

SUPPORT TO MPI APPLICATIONS ON THE GRID

Enol FERNANDEZ-DEL-CASTILLO

Instituto de Fisica de Cantabria
Edificio Juan Jordd

Avenida de los Castros s/n
39005 Santander, Spain

e-mail: enolfc@ifca.unican.es

Abstract. The current middleware stacks provide varying support for the Message
Passing Interface (MPI) programming paradigm. Users face a complex and hete-
rogeneous environment where too many low level details have to be specified to
execute even the simplest parallel jobs. MPI-Start is a tool that provides an inter-
operable MPI execution framework across the different middleware implementations
to abstract the user interfaces from the underlying middleware and to allow users
to execute parallel applications in a uniform way, thus bridging the gap between
HPC and HTC. In this work we present the latest developments in MPI-Start and
how it can be integrated in the different middleware stacks available as part of EMI,
providing a unified user experience for MPI jobs.

Keywords: Grid, MPI, parallel jobs

1 INTRODUCTION

Execution of parallel applications in grid environments requires the cooperation of
several middleware tools and services. Two main phases can be identified in the
submission of such applications: the allocation of nodes where the user job will run,
and the execution of the application using those allocated nodes. The middleware
support for MPI applications is usually limited to the possibility of allocating a set
of nodes. The user still needs to deal with low level details related to the actual
execution of the jobs that make the task non trivial. Furthermore, the heterogeneity
of resources available in Grid infrastructures aggravates the complexity that users
must face to run their applications.

150 E. Ferndndez-del-Castillo

The European Middleware Initiative (EMI) [8] project is the main developer
of grid middleware in Europe by supporting the development and integration of
three different middleware stacks for the the execution of jobs: ARC [5], gLite [17],
and UNICORE [6]. All of them have some support for the execution of parallel
applications. However, all of them have different approaches that prevent users
from easily moving from one stack to another.

MPI-Start [4] is also being developed in the context of the EMI project. MPI-
Start is a unique layer that hides the details of the resources and application frame-
works to the user and upper layers of the middleware. By using a modular and
pluggable architecture it manages the details of several elements for the user: from
Local Resource Management System (LRMS) to the specific syntax to start an ap-
plication for a given MPI implementation.

In this paper we describe the current support for MPI jobs in the different
EMI middleware stacks and how MPI-Start may be integrated with all of them in
order to provide a unified user experience across the different stacks. In Section 2,
a description of the middleware support for allocation of nodes is given. Section 3
describes MPI-Start and the integration with the middleware stacks. In Section 4,
we describe the monitoring probes for MPI in the EGI [7] Infrastructure. Finally,
in Section 5 we give some conclusions and an outlook of future work.

2 JOB SUBMISSION

Prior to the execution itself, the parallel application must be submitted to a grid
middleware that will create a work item on a Local Resource Management System
(LRMS). This middleware is usually referred to as Computing Element (CE). EMI
provides implementations of such CE in three different middleware stacks: ARC,
gLite and UNICORE. All of them provide some support for parallel applications
although the level of control for the job definition varies from one stack to other.

ARC provides the ARC-CE, which uses the Fxtended Resource Specification
Language (xRSL) language [9] for defining the jobs. In order to submit a parallel
application, the count attribute is used to specify the number of slots that must
be allocated for the application. ARC provides also the Runtime FEnvironments
(RTE), that allow the site administrator to define an environment for the execution
of specific applications. The usual way of supporting an MPI implementation in
ARC is by defining a RTE for a specific MPI implementation. The user must then
write a script that uses a set of predefined variables to start the application. Listing
1 shows an example of a 16 processes MPI application that is submitted to an ARC-
CE using the OPENMPI-1.3 Runtime Environment, the script that the user should
provide for its execution is shown in listing 2. Note that the user builds the command
line required to start the job, therefore the user must know the specific syntax for
the MPI implementation used.

&(executable="runopenmpi.sh”)
(executables=("hello—ompi.exe” ”runopenmpi.sh”))

Support to MPI Applications on the Grid 151

(count="16")

(inputfiles=("hello—ompi.exe” ”runopenmpi.sh”))
(stdout="std.out”)

(stderr="std.err”)
(runtimeenvironment="ENV/MPI/OPENMPI-1.3/GCC64”)

Listing 1. ARC parallel job description
#1/bin/sh

$MPIRUN —np $NSLOTS ./ hello—ompi. exe
Listing 2. ARC parallel job script

gLite provides the CREAM [1] as Computing Element. The language used to
describe jobs in CREAM is the Job Description Language (JDL) [19]. The user has
several ways of defining a parallel job. The most basic case is using the CPUNumber
attribute, that determines the total number of slots to be allocated by the CE.
Advanced placement of the processes on the physical hosts can be also requested
with the following attributes:

SMPGranularity This value determines the number of cores any host involved in
the allocation has to dedicate to the application.

WholeNode Indicates whether whole nodes should be used exclusively or not.

NodeNumber This integer value indicates the number of nodes the user wishes to
obtain.

The CREAM does not provide any additional support for the job execution. How-
ever, MPI-Start is usually available in glite sites to start parallel jobs. Details on
MPI-Start are given in the next Section. Listing 3 shows an example of a MPI
application with 16 processes submitted to a CREAM.

JobType = ”"Normal”;

CPUNumber = 16;

Executable = "starter .sh”

InputSandbox = {"starter.sh”, ”hello—ompi.exe” };
StdOutput = ”std.out”;

StdError = 7std.err”;

OutputSandbox = {”std.out”, "std.err”};

Listing 3. gLite parallel job description

The starter.sh script invokes MPI-Start after setting some variables that de-
termine which application the user wants to start. An example script is shown in
Listing 4.

#1/bin/bash

export 12G.MPI_APPLICATION=hello —ompi. exe

152 E. Ferndndez-del-Castillo
export 12G_MPI. TYPE=openmpi

$12G_MPI_START
Listing 4. gLite parallel job script

In the case of UNICORE jobs, users can describe their jobs using a JSON repre-
sentation of the Job Submission Description Language (JSDL) [2] format. Parallel
jobs are described using the Resources attribute. This is a complex attribute that
may contain the number of requested slots with the CPUs attribute, or advanced
placement of the processes with the CPUsPerNode attribute that indicates the num-
ber of cores in the host involved in the allocation, and the Nodes attribute that
indicates the total number of nodes the user wishes to use. The execution of the
applications is handled with the Ezecution Environments. Site administrator defines
as many Execution Environments as needed with the specific details of each kind of
job the user may execute at the site. A template based language is used to describe
these Execution Environments. Listing 5 depicts the description of an MPI job with
16 processes submitted to UNICORE. Note that there is no need to specify any user
script, the Execution Environment takes care of all the details.

{

Executable: ”./hello—ompi.exe”
Imports: |

{From: ”/myfiles/hello.mpi”, To: ”hello—ompi.exe”},
I,

Resources: {
CPUs: 16,
Ix

Execution environment: {
Name: OpenMPI,
Arguments:

Processes: 16,
})
})

Listing 5. UNICORE parallel job description

3 MPI-START

As shown in the previous section, users are able to submit and execute parallel jobs
using the current middleware stacks. However, each of them provides different level
of support and abstraction that turns the migration from one implementation to
another hard for most users. MPI-Start provides an abstraction layer that simplifies
the execution of the jobs in heterogeneous systems available in grid environments.
MPI-Start takes care of the following details for the user in an automatic way:

Support to MPI Applications on the Grid 153

e Local Resource Management System (LRMS). Each system has particular ways
to manage and interact with the nodes of the cluster. MPI-Start automatically
detects and prepares the list of machines for SGE [11], PBS/Torque [3], LSF [22],
Condor [18] and Slurm [21] batch systems.

e File distribution. The execution of a parallel application requires the distribution
of binaries and input files into the different nodes involved in the execution.
Collecting the output is a similar problem. MPI-Start has a file distribution
hook that detects if a shared filesystem is available. In the case of not being
available, MPI-Start distributes binaries and input files into the execution hosts
using the most appropriate method.

e Application compilation. In order to obtain good performance and to assure
that the binaries will fit the available resources, MPI jobs may need to be com-
piled with the local MPI implementation at each site. MPI-Start checks the
compilation flags in the system and assures that users are able to compile their
applications.

e Application execution. Fach parallel library or framework has different ways of
starting the application. Moreover, for a given framework there may be differ-
ences depending on the LRMS or file distribution method used in the execution
environment. In the case of MPI, the different vendors use mpirun and mpiexec
in a non-portable and non-standardized way. MPI-Start builds the command line
for common available MPT implementations such as Open MPI [10], MPICH [12]
(including MPICH-G2 [15]), MPICH2 [13], LAM-MPI [20] and PACX-MPI [16].

The latest developments of MPI-Start have introduced a new architecture for
extensions, the ability to define the way the user logical processes are mapped in the
physical resources and a complete review of the LRMS and Application Execution
support. These developments will be available as part of the EMI-1 release, due in
May 2011.

3.1 Hybrid MPI/Applications

Parallel applications using the shared memory paradigm are becoming more popular
with the advent of multi-core architectures. MPI-Start default behavior is to start
a process for each of the slots allocated for an execution. However, this is not
suitable for applications using a hybrid architecture where several threads access to
a common shared memory area in each of the nodes. In order to support more use
cases, the latest report of MPI-Start includes support for better control of how the
processes are started, allowing the following behaviors:

e Define the total number of processes to be started, independently of the number
of allocated slots.

e Start a single process per host. This is the usual use case for hybrid jobs with
MPT applications. MPI-Start prepares the environment to start as many threads
as slots available in the host.

154 E. Ferndndez-del-Castillo

e Start a single process per CPU socket. In this case, a hybrid application would
start as many threads as cores are available for each CPU.

e Start a process per CPU core, independently of the number of allocated slots.

e Define the number of processes to be started in each host, independently of the
number of allocated slots at each host.

Figure 1 shows the different possible mappings for two hosts with two quad-core
CPUs. In the per core case, there would be 16 MPI processes, numbered from p0
to pl15, each assigned to one CPU core. In the case of using a per socket mapping,
each host would have two different proceeses — p0 and p1 in the first host, p2 and p3
in the second host — and for each of these processes, 4 different threads (¢0 to t3).
Finally, if the per node mapping is used, only one processes would be started at
each host — p0 in first host, pl in the second one — and 8 threads would be started
for each of them, numbered from 0 to ¢7.

p0O p1 p2 p3
p9 1" 18 p15 A A A A
pOp1p2p3 pdp5p6p7 p8 P10p p1 P14p 0t ©2t3 0ttt 0t t2t3 0t 2 t3

CPUO CPU 1 CPU 1 CPU1 CPUO CPU1 CPUO CPU1

Host 0 Host 1 Host 0 Host 1
po pl
A A

t0 t1 t2 t3 t4 t5 t6 t7 t0 t1 t2 t3 t4 t5 t6 t7

CPUO CPU 1 CPUO CPU 1

Host 0 Host 1

Fig. 1. MPI-Start mapping of processes: top left: per core; top right: per socket; bottom:
per node.

Additionally, two new extensions (hooks in the MPI-Start terminology) have
introduced support for OpenMP and CPU affinity. The OpenMP support defines
in the environment the most appropriate number of threads to use by the appli-
cations given the machine configuration and the mapping selected. The affinity
hook enables, if available, the processor and memory affinity features of the MPI
implementation by creating mappings similar to the ones shown in Figure 1.

3.2 Integration with ARC and UNICORE

MPI-Start was originally developed for the integration with the glite middleware,
although the design and architecture of MPI-Start is completely independent of this
middleware. For the EMI-1 release, we have integrated the tool with the ARC and

Support to MPI Applications on the Grid 155

UNICORE middlewares by providing new Runtime Environments and Execution
Environments that can be easily configured by the site administrators.

In the case of ARC, the definition of a Runtime Environment consists in the
creation of a shell script that is invoked three times for any given execution: before
the job is submitted, before the execution of the job itself and after the job has
finished. Listing 6 shows the code for this RTE. Site administrators only need to
define any special configurations that may have their site for MPI-Start. In the given
example, by defining the variable MPT_START SHARED HOME to yes, the site admin is
indicating to MPI-Start that it should not try to detect which kind of filesystem is
available and assume a shared file system will be used. Users of this site would only
need to require in their job description the mpi-start Runtime Environment and
use MPI-Start as in a gLite site.

#1/bin/bash
parallel_env_name="mpi—start”
case "$1”7 in
0) # local LRMS specific settings , no action
1) # user environment setup
export I2G_ MPI.START=/usr/bin/mpi—start
export MPLSTART SHARED HOME=yes
2) # no post action needed
x) # everything else is an error
return 1
esac

Listing 6. ARC Runtime Environment

The definition of UNICORE Execution Environments is done using an XML file
where the options and their rendering are described. In order to use MPI-Start in
such way, we introduced the possibility of setting the parameters via command line
arguments instead of environment variables. Listing 7 shows partially one example
definition of an Execution Environment for MPI-Start. In the example the user can
define the MPI implementation to use, the total number of processes, additional
MPI-Start variables and enable the verbose output. A complete Execution Environ-
ment would provide additional options for controlling all the MPI-Start features.

<ExecutionEnvironment>
<Name>mpi—start</Name>
<Description>Run parallel applications</Description>
<ExecutableName>/usr /bin/mpi—start</ExecutableName>
<Argument>
<Name>mpi type</Name>

156 E. Ferndndez-del-Castillo

<IncarnatedValue>—t </IncarnatedValue>
<ArgumentMetadata>
<Description>MPI implementation</Description>
<Type>string</Type>
</ArgumentMetadata>
</Argument>
<Argument>
<Name>Number of Processes</Name>
<IncarnatedValue>—np </IncarnatedValue>
<ArgumentMetadata>
<Description>The number of processes</Description>
<Type>int</Type>
</ArgumentMetadata>
</Argument>
<Argument>
<Name>MPI-Start Variable</Name>
<IncarnatedValue>d </IncarnatedValue>
<ArgumentMetadata>
<Description>
Define a MPI-Start variable
(e.g., "I2G.MPI.START VERBOSE=1")
</Description>
<Type>string</Type>
</ArgumentMetadata>
</Argument>
<Argument>
<Name>Verbose</Name>
<IncarnatedValue>—v</IncarnatedValue>
<OptionMetadata>
<Description>Be verbose</Description>
</OptionMetadata>
</Argument>
</ExecutionEnvironment>

Listing 7. UNICORE Execution Environment

With the integration of MPI-Start into the ARC and UNICORE approaches
for job execution, users are provided with a unified user experience. They only
need to specify the correct parameters to MPI-Start and can easily move from one
middleware to other, or from one MPI implementation to other without worrying
about the details of each of them. For example, a hybrid application that uses Open
MP and Open MPI for execution, that needs to be compiled at the site using the
MPI-Start hooks mechanism could be defined for the three middlewares as shown
in Listings 8, 9 and 10. In the example the user defines the variable MPI_USE_OMP
to activate the OpenMP support, it requires the execution of only one MPI process

Support to MPI Applications on the Grid 157

per host with the pnode option and includes the hook myhook.sh for compilation
before the actual execution. Note that the only differences are due to the description
language of each middleware.

(Arguments="—t openmpi —d MPI.LUSE_.OMP=1
—pnode —pre myhook. sh
myapp”)
Listing 8. ARC MPI-Start example

Arguments="—t openmpi —d MPI.USE OMP=1
—pnode —pre myhook.sh
myapp” ;
Listing 9. gLite MPI-Start example

Arguments:
{ mpi—type: openmpi,
pre: myhook.sh
Per node: 1,
MPI-Start Variable: MPILUSE.OMP=1,

b

Listing 10. UNICORE MPI-Start example

4 INFRASTRUCTURE MONITORING

The execution of parallel application does not only require the middleware support
for such jobs, it also needs a correct configuration of the infrastructure where the
jobs are actually run. Grid infrastructures are mainly used for the execution of
collections of sequential jobs [14], hence the support for parallel applications was
not a priority. However, the infrastructure is composed of clusters where execution
of parallel applications is possible. In order to assure the correct execution of these
applications and, therefore, attract more users to the infrastructure, monitoring
probes that check the proper support for such jobs has been introduced.

The monitoring probes are executed at all the sites that announce the support
for MPI-Start and they consist in the following steps:

1. Assure that MPI-Start is actually available.

2. Check of the information published by the site. This first step inspects the
announced MPI flavors supports and selects the probes that will be run in the
next steps.

3. For each of the supported MPI flavors, submit a job to the site requesting
2 processes that is compiled from source using the MPI-Start hooks. The probe
checks that the number of processes used by the application was really the
requested number.

158 E. Ferndndez-del-Castillo

Although the probes request a low number of slots (2), the existence of such
probes allows, both to infrastructure operators and users, to easily detect problems.
These probes are flagged as critical, thus any failure may cause the site to be sus-
pended from the infrastructure. The introduction of these probes over the last year
has improved the quality of the MPI support significantly thanks to the commitment
of the site administrators to ensure no failures in the tests.

5 CONCLUSIONS

The execution of parallel applications in grid environments is a challenging problem
that requires the cooperation of several middleware tools and services. The support
from middleware is constantly improving and the three computing middleware stacks
of EMI provide ways to execute MPI jobs. However, the support varies from one
implementation to other and users still need to care about too many details. With
the use of MPI-Start, users do not need to worry about all the low level aspects of
starting MPI applications in a heterogeneous infrastructure such as the grid. The
latest developments in MPI-Start have introduced better control of job execution
and the integration with ARC, gLite and UNICORE. Users are totally abstracted
by using the unique interface of MPI-Start and can easily migrate their application
from one middleware provider to another.

The EGI Infrastructure is committed to the support of parallel applications and
provides monitoring probes that allow early detection of any problems that may arise
at the sites. The capability of executing MPI jobs and having a single interface for
all kind of resources and MPI implementations creates an attractive infrastructure
for users from different scientific communities with specific computational needs.
The usage of parallel applications will arise with the availability of multiple core
machines, the latest developments of MPI-Start provide a better control for the
location and number of processes and will continue to improve those features in
future releases. The use of advanced topologies, FPGAs, GPGPUs, and massively
multi-node jobs will be investigated for use on high-end resource types.

REFERENCES

[1] ArrTIMIEL C. et al.: Design and Implementation of the gLite CREAM Job Manage-
ment Service. Future Generation Computer Systems, Vol. 26, 2010, pp. 654—667.

[2] ANJOMSHOAA, A. et al.: Job Submission Description Language (JSDL) Specification,
Version 1.0. GFD-R.056, 2005.

[3] BAYucAaN, A.—HENDERSON, R.L.—LEsiak, C.—MaNN, B.—ProOeT, T.—
TwETEN, D.: Portable Batch System: External Reference Specification. Technical
report, MRJ Technology Solutions, 1999.

[4] DicHEV, K. et al.: MPI Support on the Grid. Computing and Informatics, Vol. 27,
2008, pp. 213-223.

Support to MPI Applications on the Grid 159

[5]
[6]

[7]
8]

[9]
(10]

(1]

22]

ELLERT, M. et al.: Advanced Resource Connector Middleware for Lightweight Com-
putational Grids. Future Generation Computer Systems, Vol. 23, 2007, pp. 219-240.
ErwiIN, D: UNICORE - A Grid Computing Environment. Lecture Notes in Computer
Science, Vol. 2150, 2001, pp. 825-834.

European Grid Initiative (EGI) web site. Available on: http://www.egi.eu/.
European Middleware Initiative (EMI) web site. Available on: http://wuw.eu-emi.
eu/.

Extended Resource Specification Language. NORDUGRID-MANUAL-4, 2011.
GABRIEL, E. et al.: Open MPI: Goals, Concept, and Design of a Next Genera-
tion MPI Implementation. Lecture Notes in Computer Science, Vol. 3241, 2004,
pp- 97-104.

GENTZSCH, W.: Sun Grid Engine: Towards Creating a Compute Power Grid. In
Proceedings of the first IEEE/ACM International Symposium on Cluster Computing
and the Grid, 2001, pp. 35-36.

GrorpP, W.—LUSK, E.—Doss, N.—SKJELLUM, A.: A High-Performance, Portable
Implementation of the MPI Message Passing Interface Standard. Parallel Computing,
Vol. 22, 1996, No. 6, pp. 789-828.

Groprp, W.: MPICH2: A New Start for MPI Implementations. In Proceedings of
the 9" European PVM /MPI Users’ Group Meeting on Recent Advances in Parallel
Virtual Machine and Message Passing Interface, 2002, pp. 7.

Tosup, A. et al.: The Grid Workloads Archive. Future Generation Computer Systems,
Vol. 24, 2009, No. 7, pp. 672-686.

KARroONiS, N. T. et al.: MPICH-G2: A Grid-Enabled Implementation of the Message
Passing Interface. J. Parallel Distrib. Comput, Vol. 63, 2003, No. 5, pp. 551-563.
KELLER, R.—GABRIEL, E.—KRAMMER, B.—MULLER, M.S.—REScH, M. M.:
Towards Efficient Execution of MPI Applications on the Grid: Porting and Opti-
mization Issues. Journal of Grid Computing, Vol. 1, 2003, No. 2, pp. 133-149.
LAURE, E. et al.: Programming the Grid Using gLite. EGEE-PUB-2006-029, 2006.
Litzkow, M.—L1vNYy, M.—MuTkA, M.: Condor — A Hunter of Idle Workstations.
In Proceedings of the 8" International Conference of Distributed Computing Systems,
1988, pp. 104-111.

PAcINI, F.—MARASCHINI, A.: Job Description Language (JDL) Attributes Specifi-
cation. Technical Report 590869, EGEE Consortium, 2006.

SQUYRES, J.M.: A Component Architecture for LAM/MPI. In Proceedings of the
ninth ACM SIGPLAN symposium on principles and practice of parallel programming,
2003, pp. 379-387.

Yoo, A.—JETTE, M.—GRONDONA, M.: SLURM: Simple Linux Utility for Re-
source Management. In Proceedings of the 9*® Workshop on Job Scheduling Strate-
gies for Parallel Processing, Lecture Notes in Computer Science, Vol. 2862, 2003,
pp. 44-60.

Zuou, S: Lsf: Load Sharing in Large-Scale Heterogeneous Distributed Systems. In
Proceedings of the Workshop on Cluster Computing, 2002.

160 E. Ferndndez-del-Castillo

Enol FERNANDEZ-DEL-CASTILLO joined the Advanced Com-
puting and e-Science group at Instituto de Fsica de Cantabria
in Santander (Spain) in 2009. He received his B.Sc. in Com-
puter Engineering in 2003 from the Universidad de La Laguna
(Spain) and his Ph.D. in 2008 from the Universidad Autonoma
de Barcelona (Spain). He has participated in several Spanish
and international projects in the distributed computing area,
including CrossGrid, int.eu.grid, Euforia, and EGEE projects.
He has developed tools for interactive and parallel computing in
grid environments and is the main developer of the CrossBroker
resource management system. Currently he is involved in EMI project developing tools
for parallel jobs and in the EGI-InsPIRE project in the software provisioning tasks.

