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1 INTRODUCTION

The notion of safety and liveness properties have been first introduced by Lam-
port [12]. Informally, safety properties assert that nothing bad ever happens while
liveness properties assert that something good happens eventually. This paper con-
siders the verification of liveness properties in term rewrite systems (TRSs). In
TRSs, informally we say the liveness property Live(R, I, G) holds if every maxi-
mal reduction by TRS R starting in initial states I contains an element of good
states G. In [9] the relationship between liveness and termination was studied, and
it was observed that conversely liveness can be seen as termination of a modified
relation. Since various techniques have been developed to prove termination auto-
matically, an obvious goal is to apply these techniques in order to prove liveness
properties.

The techniques which are presented in previous work [9, 10, 11] can only be
used for some verifying specific types of liveness properties. Indeed, they can verify
liveness properties where the set of good states has some specific form. Actually,
by previous techniques the liveness property Live(R, I, G) can be verified where
G = {t | t does not contain an instance of p} or G = {t | t contains an instance of
p} for some term p. Also, in these methods the initial states (I) simply contains all
the ground terms while sometimes it is required to consider I as a proper subset of
the set of all ground terms. Furthermore, they concentrate on a particular case of
rewrite systems called top rewrite systems.

In this paper we consider that R is an arbitrary TRS, and G is an arbitrary
regular set of ground terms represented by a finite tree automaton. A tree automaton
is a type of state machine. Tree automata deal with tree structures (terms), rather
than with the strings of more conventional state machines. By using finite tree
automata one can provide a finite representation for any arbitrary regular set of
terms (finite or infinite). In the general case, we consider that the set of the initial
states contains all the ground terms, but under some conditions we extend the
method to consider I as a proper subset of the set of all ground terms represented
by a tree automaton.

Considering I and G, we transform R to a new TRS R′ such that termination
of R′ proves the property Live(R, I, G). We show these transformations are sound
indeed, i.e. termination of R′ implies Live(R, I, G). Furthermore, we show under
some specific conditions these transformations are complete, i.e. Live(R, I, G) also
implies termination of R′.

Moreover, we show by some examples how this transformation can be used. To
prove termination of transformed TRSs automatic tools for termination have been
used. We have succeeded in automatically proving defined properties for all of our
examples using the AProVE 1.2 tool [8]. The system AProVE 1.2 can be used for
automated termination and innermost termination proofs of (conditional) TRSs,
Prolog programs, functional, and imperative programs.

This paper is organized as follows. In Section 2 we present some theoretical pre-
liminaries. Section 3 is the main part of this paper and investigates the verification
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method for liveness properties in term rewrite systems. Section 4 discusses liveness
in the framework of fairness. We briefly review related work in Section 5. Finally
we conclude the paper in Section 6.

2 PRELIMINARIES

2.1 Liveness in Rewriting

In this section we briefly give a formal definition of liveness using the framework
of abstract reduction and term rewriting as presented in [9]. We assume a set S

of states and a notion of computation that can be expressed by a binary relation
→⊆ S × S. So “t → u” means that a computation step from t to u is possible.
A computation sequence or reduction is defined to be a finite sequence t1, t2, . . . , tn
or an infinite sequence t1, t2, t3, . . . with ti → ti+1. We write →∗ for the reflexive
transitive closure of →, i.e., →∗ represents zero or more computation steps.

To define liveness we assume a set G ⊆ S of ‘good’ states and a set I ⊆ S of
initial states. A reduction is maximal if it is either infinite or if its last element
is in the set of normal forms NF= {t ∈ S |¬ ∃u : t → u}. The liveness property
Live(→, I, G) holds if every maximal reduction starting in I contains an element
of G. Thus, the notion of liveness describes eventuality properties.

Definition 1 (Liveness). Let S be a set of states, →⊆ S × S, and G, I ⊆ S. Let
“t1, t2, t3, . . .” denote an infinite sequence of states. Then Live(→, I, G) holds iff

1. t1, t2, t3, . . . : (t1 ∈ I ∧ ∀i : ti → ti+1) ⇒ ∃i : ti ∈ G, and

2. t1, t2, . . . , tn : (t1 ∈ I ∧ tn ∈ NF ∧ ∀i : ti → ti+1) ⇒ ∃i : ti ∈ G.

It has been shown in [10] that this notion of liveness specializes the “standard”
definition of Alpern and Schneider [1] in the framework of rewriting. In Alpern
and Schneider’s framework, a property P is a set of infinite sequences of states.
Terminating executions of a program are represented by repeating the final state
infinitely often.

Now we focus on liveness in rewriting, i.e., we study the property Live(R, I, G)
for TRS R. For an introduction to term rewriting, the reader is referred to [14], for
example.

Let Σ be a signature containing a constant and let V be a set of variables. We
write T (Σ,V) for the set of terms over Σ and V , and T (Σ) is the set of ground
terms. Now T (Σ,V) represents computation states and I, G ⊆ T (Σ,V).

2.2 Finite Tree Automata

There are two main classes of finite tree automata: top-down finite tree automata
and bottom-up finite tree automata. A non-deterministic top-down finite tree au-
tomaton (top-down NFTA) over Σ is a tuple A = (Q,Σ, QI,∆) where Q is a set of
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states (states are unary symbols), QI ⊆ Q is a set of initial states, and ∆ is a set of
rewrite rules of the following type:

q(f(x1, . . . , xn)) → f(q1(x1), . . . , qn(xn)),

where n ≥ 0, f ∈ Σ is of arity n, q, q1, . . . , qn ∈ Q, and x1, . . . , xn ∈ V .
When n = 0, i.e. when the symbol is a constant symbol c, a transition rule of

top-down NFTA is of the form q(c) → c. A top-down automaton starts at the root
and moves downward, associating along a run a state with each subterm inductively.
The tree language L(A) recognized by A is the set of all ground terms t for which
there is an initial state q0 ∈ QI such that

q0(t) →
∗
∆ t.

A non-deterministic bottom-up finite Tree Automaton (bottom-up NFTA) over Σ
is a tuple A = (Q,Σ, QF ,∆) where Q is a set of (unary) states, QF ⊆ Q is a set of
final states, and ∆ is a set of transition rules of the following type:

f(q1(x1), . . . , qn(xn)) → q(f(x1, . . . , xn)),

where n ≥ 0, f ∈ Σ is of arity n, q, q1, . . . , qn ∈ Q, and x1, . . . , xn ∈ V .
A bottom-up automaton starts at the leaves and moves upward, associating

along a run a state with each subterm inductively. There is no initial state in
a bottom-up NFTA, but, when n = 0, i.e. when the symbol is a constant symbol c,
a transition rule is of the form c → q(c). Therefore, the transition rules for the
constant symbols can be considered as the “initial rules”. The tree language L(A)
recognized by a bottom-up NFTA A is the set of all ground terms t for which there
is an final state qf ∈ QF such that

t →∗

∆ qf (t).

A tree automaton is deterministic (DFTA) if there are no two rules with the same
left-hand side. The expressive power of nondeterministic bottom-up and nonde-
terministic top-down tree automata is the same, but deterministic top-down tree
automata are strictly less powerful than nondeterministic top-down tree automata.
For an introduction to tree automata, the reader is referred to [3], for example.

We say the finite tree automaton A is closed under the TRS R iff for all terms
s ∈ L(A) if s →R t, then also t ∈ L(A).

3 VERIFICATION METHOD

In this section we first present the basic model that is used for liveness verification
in Section 3.1. Next in 3.2 and 3.3 we introduce two sound transformations that use
the basic model to transform an original TRS to a new TRS such that termination of
the new TRS validates the liveness property. Also, we show under some conditions
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these transformations are complete, i.e., if the liveness property holds then the
transformed TRS terminates.

3.1 Analysis Model

In this section we introduce the basic model that is used for liveness verification.
This model considers that the set of initial states containing all the ground terms,
i.e. I = {t | t ∈ T (Σ)}. Section 3.4 presents a technique to verify liveness properties
with arbitrary initial states (arbitrary tree automata) if one specific condition is
satisfied.

Suppose A is a finite tree automaton which accepts the set of good states. Our
model composes rewrite system R and transition function of tree automaton (∆) to
define a new rewrite system L(R,A).

It is desired that L(R,A) follows reduction steps which are presented in Figure 1.
R performs one step of reduction on a term t to produce a new term t′, then ∆
performs a few steps of reductions on term t′. If ∆ finds t′ ∈ L(A), then the
transformed TRS terminates, else allows R to perform a new reduction on t′ and so
forth.

Fig. 1. Reduction sequence in basic model

Note that this model is ideal, i.e. if a transformation follows this model exactly,
then it is sound and complete. To do this, some conditions should hold. The next
sections discuss the issue in detail.

3.2 A Sound Transformation for Top-Down NFTA

In this section we suppose A is a top-down NFTA, and define a sound trans-
formation that uses the basic model to transform the original TRS R to a new
TRS L(R,A) such that termination of the new TRS validates the liveness property
Live(R, T (Σ), L(A)). In this section we suppose A is a top-down NFTA.

Definition 2 (L(R,A) for top-down NFTA). LetA = (Q,Σ, QI,∆) be a top-down
finite tree automaton, and R be a TRS over Σ. Also, suppose root, turnA, turnR,
and letR be new unary symbols. Then term rewrite system L(R,A) over Σ ∪ Q ∪
{root, turnA, turnR, letR} consists of the following rules:
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letR(l) → turnA(r) (1)

for all rules l → r in R

f(x1, . . . , turnA(xi), . . . , xn) → turnA(f(x1, . . . , xn)) (2)

for all f ∈ Σ of arity n ≥ 1, i = 1, . . . , n

root(turnA(x)) → root(q0(x)) (3)

for all q0 ∈ QI

l → r (4)

for all rules l → r in ∆

q(f(x1, . . . , xn)) → turnR(f(x1, . . . , xn)) (5)

for all q(f(x1, . . . , xn)) such that q ∈ Q, f ∈ Σ of arity n ≥ 0, and
q(f(x1, . . . , xn)) is not an instance of the left hand side of any rule of ∆.

f(x1, . . . , turnR(xi), . . . , xn) → turnR(f(x1, . . . , xn)) (6)

for all f ∈ Σ of arity n ≥ 1, i = 1, . . . , n

turnR(turnR(x)) → turnR(x) (7)

root(turnR(x)) → root(letR(x)) (8)

letR(f(x1, . . . , xn)) → f(x1, . . . , letR(xi), . . . , xn) (9)

for all f ∈ Σ of arity n ≥ 1, i = 1, . . . , n

The following theorem shows that the above transformation is sound, i.e. termi-
nation of L(R,A) implies validation of Live(R, T (Σ), L(A)).

Theorem 1 (Soundness). Let R be a TRS, and A be a top-down finite tree au-
tomaton. If NF ⊆ L(A), then termination of L(R,A) implies Live(R,T (Σ), L(A)).

Proof. Assume Live(R, T (Σ), L(A)) does not hold. Then one of the following con-
ditions holds:

1. There is a finite sequence t0, t1, . . . , tn such that t0 ∈ T (Σ), tn ∈ NF, ∀i : ti →R

ti+1, ti 6∈ L(A), which contradicts NF ⊆ L(A).
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2. There is an infinite sequence t0, t1, t2, . . . , such that t0 ∈ T (Σ), ∀i : ti →R ti+1,
ti 6∈ L(A). To prove the theorem, we show:

∀i : root(letR(ti)) →
+
L(R,A) root(letR(ti+1)),

which gives an infinite L(R,A)-reduction, in contradiction to termination of
L(R,A).

We have ti →R ti+1, then there is a rule l → r in R, some context Ci, and some
substitution σ such that, ti = Ci[lσ] and ti+1 = Ci[rσ]. Then,

root(letR(ti)) = root(letR(Ci[lσ])) →∗
L(R,A) root(Ci[letR(lσ)])

→L(R,A) root(Ci[turnA(rσ)])
→∗

L(R,A) root(turnA(Ci[rσ]))

= root(turnA(ti+1))
→L(R,A) root(q0(ti+1))

ti+1 6∈ L(A), i.e. A does not accept ti+1, then there is some context C ′
i, a term

f(s1, . . . , sn), and at least one q ∈ Q, such that

root(q0(ti+1)) →
∗

∆ root(C ′

i[q(f(s1, . . . , sn))]),

and q(f(s1, . . . , sn)) can not reduce further by ∆. L(R,A) contains all rules of ∆,
then

root(q0(ti+1)) →
∗

L(R,A) root(C
′

i[q(f(s1, . . . , sn))])

q(f(s1, . . . , sn)) can not reduce further by ∆, hence q(f(x1, . . . , xn)) is not an in-
stance of left hand side of any rule of ∆, so q(f(x1, . . . , xn)) → turnR(f(x1, . . . , xn))
is in L(R,A), then

root(C ′
i[q(f(s1, . . . , sn))]) →L(R,A) root(C

′
i[turnR(f(s1, . . . , sn))]).

If there is more than one turnR symbol in the context it can be reduced to one,
using the rule turnR(turnR(x)) → turnR(x), so

root(C ′
i[turnR(f(s1, . . . , sn))]) →

∗
L(R,A) root(turnR(C

′
i[f(s1, . . . , sn)]))

= root(turnR(ti+1))
→L(R,A) root(letR(ti+1)).

Then, ∀i : root(letR(ti)) →
+
L(R,A) root(letR(ti+1)). 2

The following example shows how this transformation can be used.

Example 1. Let Σ = {f(), c} and R = {f(x) → f(f(x))}. Also suppose G =
{fn(c) | n ≥ 3} ∪ {c}. Then the tree automaton A in which L(A) = G is defined as
follows:

Q = {q0, q1, q2, q3},Σ = {f(), c}, QI = {q0},∆ :
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q0(f(x)) → f(q1(x)) q2(f(x)) → f(q3(x))
q0(c) → c q3(f(x)) → f(q3(x))
q1(f(x)) → f(q2(x)) q3(c) → c

Then L(R,A) consists of the following rules:

L(R,A) :
letR(f(x)) → turnA(f(f(x))) q1(c) → turnR(c)

q2(c) → turnR(c)
f(turnA(x)) → turnA(f(x))

f(turnR(x)) → turnR(f(x))
root(turnA(x)) → root(q0(x))

turnR(turnR(x)) → turnR(x)

q0(f(x)) → f(q1(x)) root(turnR(x)) → root(letR(x))
q0(c) → c

q1(f(x)) → f(q2(x)) letR(f(x)) → f(letR(x))
q2(f(x)) → f(q3(x))
q3(f(x)) → f(q3(x))
q3(c) → c

Note that NF = {c} ⊆ L(A). The TRS L(R,A) is terminating; this can be proved
by the tool AProVE [8]. Thus the liveness property holds in the TRS. 2

Now we show under some conditions our transformation is complete, i.e. if
L(R,A) is non-terminating, liveness property Live(R, T (Σ), L(A)) does not hold.
Indeed we have the following theorem.

Theorem 2 (Completeness). Let A be a top-down finite tree automata, and R be
a TRS such that

1. QI contains only one initial state, i.e. QI = {q0},

2. A is deterministic, and

3. R is non-duplicating, i.e., for every rule l → r, no variable occurs more often in
r than in l,

Then if Live(R, T (Σ), L(A)) holds, then L(R,A) terminates.

To prove completeness of the transformation, we need several auxiliary lemmas.
At first we recall the following lemma from [9]. For a function symbol f ∈ Σ and
a term t ∈ T (Σ,V), let ‖ t ‖f be the number of f -symbols occurring in t. For
∅ 6= Σ′ ⊆ Σ, let ‖ t ‖Σ′=

∑
f∈Σ′ ‖ t ‖f .
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Lemma 1. Let R be a non-duplicating TRS, and for some Σ′ ⊆ Σ,

‖ l ‖Σ′ ≥ ‖ r ‖Σ′ for all rules l → r in R

Let R′ consist of those rules l → r from R which satisfy ‖ l ‖Σ′ > ‖ r ‖Σ′ . Then R

is terminating if and only if R \ R′ is terminating.

Lemma 2. Let R be a non-duplicating TRS, A be a finite tree automaton, and
L′(R,A) = L(R,A) \ {(5)}. Then L′(R,A) is terminating.

Proof. Let Σ′ = {turnR}, then by Lemma 1, L′(R,A) = L(R,A) \ {(5)} is
terminating if and only if L(R,A) \ {(5), (7), (8)} is terminating. Now let Σ′ =
{letR}, then similarly by Lemma 1, L(R,A) \ {(5), (7), (8)} is terminating if and
only if L(R,A) \ {(5), (7), (8), (1)} is terminating. Now let Σ′ = {turnA}, then
similarly by Lemma 1, L(R,A) \ {(5), (7), (8), (1)} is terminating if and only if
L(R,A) \ {(5), (7), (8), (1), (3)} is terminating.

Then L′(R,A) is terminating if and only if {(2), (4), (6), (9)} is terminating. All
rules of (2) can be removed using polynomial ordering. To remove rule f(x1, . . . ,

turnA(xi), . . . , xn) → turnA(f(x1, . . . , xn)), the following polynomial ordering can
be used [2]:

[letR](X1) = X1

[turnR](X1) = X1

[turnA](X1) = 1 +X1

[q](X1) = X1 for all q ∈ Q

[f ](X1, . . . , Xi, . . . , Xn) = X1 + . . .+ 2 ∗Xi + . . .+Xn for all i ∈ {1, ..., n}
[g](X1, . . . , Xm) = X1 + . . .+Xm for all function symbols g ∈ Σ, g 6= f

[a] = 0 for all constant symbols a ∈ Σ.

Similarly, all rules of (6) and (9) can be removed using polynomial ordering.
Then L′(R,A) are terminating if and only if all rules of type (4), i.e. rules of ∆, are
terminating. Obviously ∆ is terminating, then L′(R,A) are terminating. 2

Lemma 3. Let R be a non-duplicating TRS, A be a finite tree automaton, and
L′(R,A) = L(R,A) \ {(3)}. Then L′(R,A) is terminating.

Proof. Let L′(R,A) be non-terminating, then there is an infinite sequence t0 →
t1 → t2 → . . . of L′(R,A)-reductions.

By definition, L′(R,A) does not contain any rule of form root(turnA(x)) →
root(q0(x)). Also, ∆ is terminating and R is non-duplicating, then in the above
reduction only finite numbers of q ∈ Q symbols can be generated. On the other hand,
due to Lemma 2, this reduction contains infinitely many applications of rules (5).
In every application of rules (5) one q ∈ Q symbol disappears. Then, to generate
sufficient q ∈ Q symbols, this reduction must contain infinitely many applications
of rules (3). Hence, L(R,A) \ {(3)} is terminating. 2
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To introduce the next lemma, first we recall the notion t for a term t ∈ T (Σ ∪
Q∪{turnA, turnR, letR}) from [11]. t denotes term t after removing all occurrences
of symbols of Q ∪ {turnA, turnR, letR}). Formally:

turnA(t) = t, turnR(t) = t, letR(t) = t, q(t) = t for all q ∈ Q,

f(t1, . . . , tn) = f(t1, . . . , tn) for all f ∈ Σ.

Lemma 4. Let R be a non-duplicating TRS, A = (Q,Σ, QI,∆) be a deterministic
finite tree automaton, and t0 ∈ T (Σ∪Q∪{turnA, turnR, letR}). If t0 ∈ L(A) and
QI = {q0}, then there is no infinite sequence of L(R,A)-reductions, starting with
root(q0(t0)).

Proof. Suppose there exists infinite sequence root(q0(t0)) → root(t1) → root(t2)
→ · · · of L(R,A)-reductions. Then one of the following occurs:

I) t0 = t0, i.e. the term t0 does not contain none of symbols of Q∪{turnA, turnR,
letR}. In this case there is only one option for reducing the term root(q0(t0)),
i.e., root(q0(t0)) →+ root(t0) using ∆ rules, due to theorem hypothesis t0 ∈
L(A). However, the term root(t0) can not be reduced further using L(R,A).
Hence this case can not result in an infinite sequence of L(R,A)-reductions.

II) The term t0 contains one of the symbols turnA, turnR, or letR. So, all of the
consequence symbols of q0 that will be obtained using ∆ rules and reach one
of the symbols turnA, turnR, or letR – that we show them by qi – can not be
removed, because this symbol can not reach a constant symbol to be removed
using ∆ rules. Indeed, we have one of the following reductions for each symbol
of {turnA, turnR, letR} that appears in reduction sequence:

root(q0(t0)) →
∗ root(C[qi(turnA(s))]),

root(q0(t0)) →
∗ root(C[qi(turnR(s))]),

root(q0(t0)) →
∗ root(C[qi(letR(s))]),

for some context C and term s. In all of the above reductions a symbol turnA
can not reach root. So, rules of type (3) can not be used in the reduction.
But, due to Lemma 3, L(R,A)\{(3)} is terminating. Hence this case can not
results in an infinite sequence of L(R,A)-reductions. Note that occurring or not
occurring of q ∈ Q symbols in t0 does not care for the proof in this case.

III) The term t0 does not contain any of the symbols of {turnA, turnR, letR}, but
contains at least one of the symbols of Q. In this case, if symbols of Q can be
removed using ∆ rules then this case is the same as case I, else it is the same
as case II. Hence this case can not result in an infinite sequence of L(R,A)-
reductions again. This contradiction proves the lemma.

2

Now we can prove Theorem 2.
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Proof. [Completeness] Let Σ′ = Σ ∪ Q ∪ {root, turnA, turnR, letR}, and set of
root terms be Troot = {root(t) | t ∈ T (Σ′\{root},V)}. Suppose Live(R, T (Σ),
L(A)) holds, but L(R,A) does not terminate. By type introduction [15] it can be
shown that there exists an infinite L(R,A)-reduction of ground root terms. We
show this sequence of reductions by root(t0) → root(t1) → root(t2) → . . .. Let
M = {i | ti = root(q0(t

′
i)) for some term t′i}. By Lemma 3, L(R,A) \ {(3)} is

terminating, and hence M is infinite.
We claim there exist infinitely many j such that j ∈ M and t′j ∈ L(A). Suppose

for all j ∈ M , t′j 6∈ L(A). Due to liveness property, there exist infinitely many
root(tk) in the sequence such that tk ∈ L(A), because if there exist only finitely
many root(tk) such that tk ∈ L(A), removing finite prefix of sequence yields an in-
finite L(R,A) reduction in which no member of L(A) occurs at all. To generate
such root(tk) the following reduction must appear in the sequence:

. . .root(C[letR(s0)]) → root(tk) →
+ root(s1) →

+ root(turnA(s2))
→ root(q0(s3)) →+ root(letR(s4)) . . .

for some context C and terms s0, . . ., and s4.
To reduce root(s1) to root(letR(s4)), we must have s1 6∈ L(A); but tk ∈ L(A),

then to reduce root(tk) to root(s1) the following reduction must appear in the
sequence:

root(tk) = root(C ′[letR(t′k)]) → root(C ′[turnA(s′1)]) →
+ root(s1)

for some context C ′ and term s′1.
Then, for reducing each root(tk) two letR disappear and one letR symbol

appears in the sequence. R is non-duplicating, then this subsequence of reduction
can be done for finitely many of tk terms. Thus there exist infinitely many tk
such that tk ∈ L(A) and tk = q0(t

′
k); but this result contradicts Lemma 4, because

Lemma 4 states that there is not any infinite sequence of L(R,A)-reductions starting
with root(q0(t

′
k)). This contradiction proves the theorem. 2

The following examples show that conditions (1) and (2) of this theorem are
essential, but we have not any example to prove condition (3) is also essential.

Example 2. Let Σ = {f(), a, b, c} and R = {a → b, b → c, c → a}. Also suppose
G = {t | t contains symbol a or symbol b}. Then tree automaton A in which
L(A) = G can be defined as follows:

Q = {q0, q1},Σ = {f(), a, b, c}, QI = {q0, q1},∆ :

q0(f(x)) → f(q0(x)) q1(f(x)) → f(q1(x))
q0(a) → a q1(b) → b

Then L(R,A) consists of the following rules:
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L(R,A) :
letR(a) → turnA(b) q0(b) → turnR(b)
letR(b) → turnA(c) q0(c) → turnR(c)
letR(c) → turnA(a) q1(a) → turnR(a)

q1(c) → turnR(c)
f(turnA(x)) → turnA(f(x))

f(turnR(x)) → turnR(f(x))
root(turnA(x)) → root(q0(x))
root(turnA(x)) → root(q1(x)) turnR(turnR(x)) → turnR(x)

q0(f(x)) → f(q0(x)) root(turnR(x)) → root(letR(x))
q0(a) → a

q1(f(x)) → f(q1(x)) letR(f(x)) → f(letR(x))
q1(b) → b

Clearly liveness property Live(R, T (Σ), L(A)) holds in the TRS, but L(R,A) is not
terminating. We have the following loop:

root(q0(b)) → root(turnR(b)) → root(letR(b)) → root(turnA(c)) →
root(q0(c)) → root(turnR(c)) → root(letR(c)) → root(turnA(a)) →
root(q1(a)) → root(turnR(a)) → root(letR(a)) → root(turnA(b)) →
root(q0(b)) → . . . 2

Example 3. Let Σ = {f(, ), a, b} and R = {a → b, b → a}. Also supposeG = {t | t
contains symbol a}. Then tree automatonA in which L(A) = G is defined as follows:

Q = {q0, q1},Σ = {f(, ), a, b}, QI = {q0},∆ :

q0(f(x, y))→ f(q0(x), q1(y)) q1(f(x, y)) → f(q1(x), q1(y))
q0(f(x, y))→ f(q1(x), q0(y)) q1(a) → a

q0(a) → a q1(b) → b.

Obviously A is not deterministic. L(R,A) consists of the following rules:

L(R,A) :
letR(a) → turnA(b) q0(b) → turnR(b)
letR(b) → turnA(a)

f(turnR(x), y) → turnR(f(x, y))
f(turnA(x), y) → turnA(f(x, y)) f(x, turnR(y)) → turnR(f(x, y))
f(x, turnA(y)) → turnA(f(x, y))

turnR(turnR(x)) → turnR(x)
root(turnA(x)) → root(q0(x))

root(turnR(x)) → root(letR(x))
q0(f(x, y)) → f(q0(x), q1(y))
q0(f(x, y)) → f(q1(x), q0(y)) letR(f(x, y)) → f(letR(x), y)
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q0(a) → a letR(f(x, y)) → f(x, letR(y))
q1(f(x, y)) → f(q1(x), q1(y))
q1(a) → a

q1(b) → b.

Clearly liveness property Live(R, T (Σ), L(A)) holds in the TRS, but L(R,A) is not
terminating. We have the following loop:

root(q0(f(a, b))) → root(f(q1(a), q0(b))) → root(f(a, q0(b))) →
root(f(a, turnR(b))) → root(turnR(f(a, b))) → root(letR(f(a, b))) →
root(f(letR(a), b)) → root(f(turnA(b), b)) → root(turnA(f(b, b))) →
root(q0(f(b, b))) → root(f(q1(b), q0(b))) → root(f(b, q0(b))) →
root(f(b, turnR(b))) → root(turnR(f(b, b))) → root(letR(f(b, b))) →
root(f(letR(b), b)) → root(f(turnA(a), b)) → root(turnA(f(a, b))) →
root(q0(f(a, b))) → . . .2

3.3 A Sound Transformation for Bottom-Up NFTA

Although the languages accepted by bottom-up NFTAs are the same as the lan-
guages accepted by top-down NFTAs, for particular examples using bottom-up
NFTAs may be simpler than using top-down NFTAs. Therefore it makes sense
to consider an alternative transformation based on bottom-up NFTA. For this we
propose the following definition:

Definition 3 (L(R,A) for bottom-up NFTA). Let A = (Q,Σ, QF ,∆) be a bot-
tom-up finite tree automaton, and R be a TRS over Σ. Also, suppose root, turnA,
letA, turnR, and letR be new unary symbols. Then term rewrite system L(R,A)
over Σ ∪Q ∪ {root, turnA, letA, turnR, letR} consists of the following rules:

letR(l) → turnA(r) (10)

for all rules l → r in R

f(x1, . . . , turnA(xi), . . . , xn) → turnA(f(x1, . . . , xn)) (11)

for all f ∈ Σ of arity n ≥ 1, i = 1, . . . , n

root(turnA(x)) → root(letA(x)) (12)

letA(f(x1, . . . , xn)) → f(letA(x1), . . . , letA(xn)) (13)

for all f ∈ Σ of arity n ≥ 1, i = 1, . . . , n

letA(c) → qc(c) (14)

for all c → qc(c) in ∆
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l → r (15)

for all l → r in ∆ except rules c → qc(c)

root(q(x)) → root(turnR(x)) (16)

for all q ∈ Q\QF

f(q1(x1), . . . , qn(xn))) → turnR(f(x1, . . . , xn)) (17)

for all f(q1(x1), . . . , qn(xn))) such that qi ∈ Q, f ∈ Σ of arity n ≥ 1, and f(q1(x1),
. . . , qn(xn))) is not an instance of left hand side of any rule of ∆.

f(x1, . . . , turnR(xi), . . . , xn) → turnR(f(x1, . . . , xn)) (18)

for all f ∈ Σ of arity n ≥ 1, i = 1, . . . , n

q(x) → x (19)

for all q ∈ Q

root(turnR(x)) → root(letR(x)) (20)

letR(f(x1, . . . , xn)) → f(x1, . . . , letR(xi), . . . , xn) (21)

for all f ∈ Σ of arity n ≥ 1, i = 1, . . . , n

The following theorem shows this transformation is sound.

Theorem 3 (Soundness). Let R be a TRS, and A be a bottom-up finite tree au-
tomaton. If NF ⊆ L(A), then termination of L(R,A) implies Live(R,T (Σ), L(A)).

The above theorem can be proved similar to Theorem 1. Also, the following theorem
shows under some conditions this transformation is complete.

Theorem 4 (Completeness). Let A be a bottom-up finite tree automata, and R

be a TRS such that

• A is deterministic, and

• R is non-duplicating,

Then if Live(R, T (Σ), L(A)) holds, L(R,A) terminates.

The proof of this theorem needs explaining several details, but the general procedure
for its proving is similar to proof of Theorem 2. Then, here we ignore proving this
theorem. Indeed to prove the theorem, we need to rewrite Lemmas 2, 3, and 4 with
respect to the new setting, and then by type introduction [15] to show that there is
not any infinite L(R,A)-reduction of ground root terms.

For every bottom-up NFTA, we can construct an equivalent bottom-up
DFTA [3]. So the first condition above could be handled easily. Then this transfor-
mation leads us to better completeness results.
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3.4 Initial States

Sometimes we need to consider initial states as a proper subset of the set of all
ground terms. Techniques for proving local termination [4] can be used to prove
this type of liveness properties. Local termination considers proving termination on
a restricted set of terms rather than set of all ground terms.

Beside techniques for proving locall termination, if AI is closed under R, we
present a technique to verify liveness properties with initial states L(AI). In the fol-
lowing theorem LC(A) shows the complement of L(A), and NF(S) = {t ∈ NF | ∃s ∈
S : s →∗

R t}, where S is a set of terms.

Theorem 5 (Initial States). Let A, AI , and AG be three finite tree automata, such
that L(A) = LC(AI) ∪ L(AG). For a TRS R if NF(L(AI)) ⊆ L(AG), and AI be
closed under R, then termination of L(R,A) implies Live(R, L(AI), L(AG)).

Proof. Suppose Live(R,L(AI), L(AG)) does not hold. Then one of the following
conditions holds:

1. There is a finite sequence t0, t1, . . . , tn such that t0 ∈ L(AI),tn ∈ NF(L(AI)),
∀i : ti →R ti+1, ti 6∈ L(AG), in contradiction to NF(L(AI)) ⊆ L(AG).

2. There is an infinite sequence t0, t1, t2, . . . , such that t0 ∈ L(AI), ∀i : ti →R ti+1,
ti 6∈ L(AG). Let k = min{j|tj ∈ L(A)}. By Theorems 1 and 3, there exists
such k. We have L(A)= LC(AI)∪L(AG), and ∀i : ti 6∈ L(AG), then tk ∈ LC(AI),
so tk 6∈ L(AI).

Also, ∀i, i = 0, . . . , k−1 : ti 6∈ LC(AI)∪L(AG), then ∀i, i = 0, . . . , k−1 : ti 6∈ LC(AI),
so tk−1 ∈ L(AI).

tk−1 ∈ L(AI), tk−1 →R tk ,tk 6∈ L(AI), then AI is not closed under R. This
contradiction proves the theorem. 2

The following example shows how this transformation can be used.

Example 4. Let Σ = {f(), g(), c} and R = {f(x) → f(f(x)), g(x) → g(g(x))}.
Also suppose I = {fn(c) | n ≥ 1} ∪ {c} and G = {fn(c) | n ≥ 3} ∪ {c}. Then tree
automaton A in which L(A) = LC(AI) ∪ L(AG) is defined as follows:

Q = {q0, q1, q2, q3},Σ = {f(), g(), c}, QI = {q0},∆ :

q0(f(x)) → f(q1(x)) q2(f(x)) → f(q3(x))
q0(g(x)) → g(q3(x)) q2(g(x)) → g(q3(x))
q0(c) → c q3(f(x)) → f(q3(x))
q1(f(x)) → f(q2(x)) q3(g(x)) → g(q3(x))
q1(g(x)) → g(q3(x)) q3(c) → c.

Then L(R,A) consists of the following rules:
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L(R,A) :
letR(f(x)) → turnA(f(f(x))) q1(c) → turnR(c)
letR(g(x)) → turnA(g(g(x))) q2(c) → turnR(c)

f(turnA(x)) → turnA(f(x)) f(turnR(x)) → turnR(f(x))
g(turnA(x)) → turnA(g(x)) g(turnR(x)) → turnR(g(x))

root(turnA(x)) → root(q0(x)) turnR(turnR(x)) → turnR(x)

q0(f(x)) → f(q1(x)) root(turnR(x)) → root(letR(x))
q0(g(x)) → g(q3(x))
q0(c) → c letR(f(x)) → f(letR(x))
q1(f(x)) → f(q2(x)) letR(g(x)) → g(letR(x))
q1(g(x)) → g(q3(x))
q2(f(x)) → f(q3(x))
q2(g(x)) → g(q3(x))
q3(f(x)) → f(q3(x))
q3(g(x)) → g(q3(x))
q3(c) → c.

It can be shown easily that conditions of Theorem 5 hold and L(R,A) is terminating,
thus liveness property Live(R,L(AI), L(AG)) holds in the TRS. 2

In general, using Theorem 5 for proving liveness is somewhat difficult, because
checking whether NF(L(AI)) ⊆ L(AG) is not decidable in the general case; also the
size of the tree automata that accepts all terms but those of I can be exponentially
bigger than AI . However, as it was observed, in some problems using this technique
can be helpful.

4 LIVENESS WITH FAIRNESS

The notion of liveness in TRSs has been extended in [11] to include fair computa-
tions, i.e., that liveness is not restricted to its basic notion stating that any infinite
computation eventually reaches a good state, but it can be done for infinite fair
computations, where infinite computations contain some essential steps infinitely
often.

There are different notions of fairness in term rewriting literature. In [13] Lucas
and Meseguer have presented some comparisons between existing notions of fairness.
In this paper we use Koprowski and Zantema’s definition [11].

Based on Koprowski and Zantema’s definition of fairness, in fair computations,
instead of a single rewrite relation→, we have two relations →,

=
→⊆ S×S which are

presented by rewrite systems R and R=. An infinite reduction in → ∪
=
→ is called

fair (with respect to
=
→) if it contains infinitely many

=
→-steps [11]. Then liveness

for fair reductions with respect to R and R=, initial states I and good states G,
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Live(R,R=, I, G), holds iff for any infinite fair reduction t1 → t2 → t3 → . . . with
t1 ∈ I , we have ∃i : ti ∈ G.

In previous sections we saw how liveness corresponds to termination. Similarly,
liveness in fair computations corresponds to relative termination [11]. A rewrite
system R is said to terminate relatively to R= if every (possibly infinite) → ∪

=
→

computation contains only finitely many → steps [7].
The presented transformation can be extended to contain the notion of fairness.

When we study liveness in fair computations, there are two different rewrite systems.
Thus it is required to transform both R and R=.

L(R,A):
letR(l) → turnA(r) for all rules l → r in R

L(R=,A) is also obtained for both top-down and bottom-up NFTAs using the defi-
nitions 2 and 3 respectively, i.e.,

L(R=,A):
letR(l)

=
→ turnA(r) for all rules l

=
→ r in R=

...

Then if L(R,A) terminates relatively to L(R=,A), desired liveness property holds
in the system.

The soundness of the above transformation can be proved in the same way as
that of L(R,A), also if A is a top-down or bottom-up NFTA, completeness of this
transformation depends on satisfying the conditions of Theorem 2 or 4, respec-
tively.

5 RELATED WORK

In this section we briefly review related work in the domain of safety and liveness
verification.

When we verify a safety property, we indeed verify if none of the bad states are
reachable; more precisely, if we could enumerate all reachable states, then we also
could verify if bad states belong to it or not. Thus reachability analysis can be used
for safety verification.

In the domain of reachability analysis over term rewriting systems there are some
publications, and some automatic tools have been introduced, even some techniques
of reachability analysis have been used for cryptographic protocol verification [6].
The reference [4] surveys some techniques and tools for achieving reachability ana-
lysis over term rewriting systems. The core of those techniques is a generic tree
automata completion algorithm used to compute in an exact or approximated way
the set of descendants (or reachable terms).

In the domain of liveness verification over term rewriting systems some work
was done before. In this work the focus was on a special class of TRSs called top

rewrite systems. Giesl and Zantema in [9] have defined a specific type of liveness
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properties in TRSs called global liveness. The good states of global liveness is defined
as G = {t | t does not contain an instance of p} for some term p. They have proposed
two transformations for global liveness. The first one, sound and complete, results
in complicated TRSs even for extremely simple liveness problems for which proving
termination is very difficult. The second one is only sound, thus simple. Also, in [10]
they have defined a new type of liveness properties called local liveness, as well as
two transformations, similar to global liveness. The good states of local liveness is
defined as G = {t | t contains an instance of p} for some term p.

In [11] Koprowski and Zantema have extended the notion of liveness to in-
clude fair computations. Furthermore, they have introduced a new transformation
for verifying global liveness in the framework of fairness. Recently, in [13] Lucas
and Meseguer have considered applying rewriting termination technology – enjoy-
ing a quite mature set of termination results and tools – to the problem of proving
automatically the termination of concurrent systems under fairness assumptions.
These new introduced techniques could be used to obtain new results for dealing
with liveness verification in fair conditions.

6 CONCLUSIONS

In this paper the problem of liveness verification in term rewrite systems was con-
sidered. Our general idea is to specify the desired liveness property using two finite
tree automata which represent the corresponding sets of good states and initial
states. Then to verify the liveness property, considering these two finite tree au-
tomata we transform the original TRS to a new TRS such that termination of
the new TRS validates the desired liveness property. We have shown that the
provided transformations are indeed sound and under some specific conditions are
complete.

Although the general approach used in our method is not new, we have some
novel extensions over previous work. While in earlier works the type of original
TRS is restricted to a special kind of systems named top rewrite systems, we have
removed this limitation to consider any arbitrary TRS. Furthermore, using prior
methods the liveness property can be verified where the set of good states has
some specific form. To remove this limitation we have used the notion of finite
tree automata to represent good states by arbitrary regular language. Although in
the general case this method considers that the set of initial states contains all the
ground terms, but under some conditions we have extend the method to consider
initial states as a proper subset of the set of all ground terms represented by a finite
tree automaton.

Although termination problem is a non-decidable problem in general, i.e. there
is not any algorithm to prove or deny termination of all TRSs, this reality is not
unpromising, because many termination problems can be solved by existing me-
thods. In this way, automatic tools for proving termination could be helpful.
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