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Institute of Informatics
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Abstract. Consider an orthogonal grid of streets and avenues in a Manhattan-
like city populated by stationary sensor modules at some intersections and mobile
robots that can serve as relays of information that the modules exchange, where
both module-module and module-robot communication is limited to a straight line
of sight within the grid. The robots are oblivious and move asynchronously. We
present a distributed algorithm that, given the sensor locations as input, moves the
robots to suitable locations in the grid so that a connected network of all modules
is established. The number of robots that the algorithm uses is worst case optimal.
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1 INTRODUCTION

Let Z and R be the set of integers and the set of reals, respectively. Let G be an in-
finite grid in the 2D Euclidean space R

2 defined as the union of integer-coordinate
points (x, y), x, y ∈ Z, called vertices and unit-length line segments called edges

connecting “adjacent” vertices located at distance 1 of each other. We view G as
an environment of rows and columns in which communication is possible between
two points p and q if and only if the line segment pq connecting them lies entirely
within G. In other words, p and q can communicate with each other if and only if
they can “see” each other assuming straight line visibility along rows and columns.
A grid-like environment is a natural model for considering limitations on both vision
and movement, when discussing motion planning problems in urban spaces.

Given a finite subset P of vertices of G, define its visibility graph GP using P

as the vertex set and including edge {p, q} for every pair of vertices p, q ∈ P that
are mutually visible. We refer to each connected components of GP simply as
a component of P . P is said to be connected if it has exactly one component.
Assuming that

1. P represents stationary sensor modules in G that from time to time must com-
municate with each other, and

2. G contains a number of mobile robots, each represented by a point, that can
serve as “relays” for inter-module communication,

we discuss the following connection problem: Given a finite set P of vertices of G
and initial locations of the robots, move the robots so that R∪P is connected, where
R is the set of final locations of the robots.

We present a simple distributed algorithm, to be executed by the robots indivi-
dually, for solving the connection problem in the CORDA model [22]. The CORDA
model uses continuous time t ≥ 0, and the robots asynchronously and repeatedly
execute an Idle-Look-Idle-Compute-Idle-Move cycle. We assume a weak fairness

condition that guarantees that every robot executes the cycle infinitely many times.
Here, the Look and Compute steps are instantaneous while the Idle steps take a finite
but unpredictable length of time. In the Move step the robot moves continuously at
an unpredictable speed toward the target position computed in the Compute step
based on the observation of the environment obtained in the Look step. Usually it is
assumed that a robot stops and ends the Move step when it hits an upper bound on
the distance it can move in one Move. In this paper we assume that the upper bound
is 1 (so a robot can move from one vertex to an adjacent vertex). Note that a robot
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may be “seen while moving”, and a robot may compute its target position based
on an observation that may be obsolete because of the Idle step between the Look
and Compute steps. We assume that in the Look step a robot obtains a complete
description of the current configuration – the locations of the sensors and robots,
as well as its own location, all in terms of its local coordinate system (the local
coordinate systems of two robots may not agree). Here, we may conceive each robot
as being equipped with radar having an unlimited range for locating objects in G.
Finally, we assume that the robots are oblivious. An oblivious robot does not have
memory to store the events in the past, and hence the target location it computes
in the Compute step is a function of what it observes in the Look step immediately
preceding it.

We assume that initially the robots occupy distinct vertices, and impose the
condition that at any time, two or more robots must not create a multiplicity by
occupying the same location simultaneously. This is based on the observation that,
since the robots are oblivious, two robots (whose local coordinate systems agree)
may never be separated once they occupy the same location, effectively reducing
the number of available robots.

The problem of establishing or maintaining a connected network of a given set
of entities has arisen in many areas, and hence there are a number of motivations for
considering the connection problem in the setting described above – we shall discuss
only three. First, our problem addresses data aggregation, which is a fundamental
issue in sensor networks, where data collected by spatially distributed sensor modules
are sent to a designated sink by a multi-hop routing algorithm – see [3, 9, 25]
for recent surveys of strategies and techniques for the node placement problem in
wireless sensor networks. Specifically, our connection problem can be considered as
a variant of the dynamic node placement problem, where the network is adaptive
and the objective is to maintain the connectivity between sensors via additional
relays in a changing environment – see for example [1, 2, 13]. Although we discuss
our problem in a static setting, our solution, which involves oblivious robots acting
as relays, can be used to handle a dynamic situation in which the set of sensors to
be connected may change from time to time, provided that the number of robots is
sufficient.

Second, since we assume vision-based communication, our objective can be
viewed as providing connectivity between the connected components of the visi-
bility graph of a set of guards, as in [20, 21], where the problem is discussed in
the context of computing control points of a navigational path in the presence of
obstacles. In our scenario, sensors may be thought of as guards (partially) covering
the streets/avenues of a Manhattan-like city, with blocks of buildings obscuring vi-
sibility, where the robots must serve as additional connectors to make the visibility
graph of the set of guards connected.

Finally, the connecting problem we discuss can be viewed as a variation of the
formation problem of geometric patterns for autonomous mobile robots [10, 23, 24] in
which the target pattern, usually fixed and given in advance, depends on the sensor
module locations given as input to the robots. Problems related to formation include
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“rendezvous” [4, 7, 11, 17, 18], “spreading” [8] and “partitioning” [12]. See [19] for
a survey of some of the results on the subject.

The following theorem summarizes the main result. As we discuss in Section 2,
the instances of the connection problem are categorized into three cases, Cases 1, 2
and 3.

Theorem 1. There exists an oblivious algorithm in the CORDA model that, given
an arbitrary vertex set P of size n having c ≥ 2 components, solves the connection
problem for P using m robots in any initial configuration,

1. for any m ≥ c− 1 in Case 1;

2. for any odd m ≥ c− 1 and any even m ≥ min{n − 1, 2c− 2} in Case 2;

3. for any odd m ≥ c − 1, any m = 4k + 2 ≥ min{n − 1, 2c − 2}, and any
m = 4k ≥ min{n− 1, 4c− 4} in Case 3.

These lower bounds on the number of robots are tight, in the sense that there exist
instances (i.e., P together with the robots’ initial positions and local coordinate
systems) in which the connection problem cannot be solved using fewer robots by
any deterministic algorithm.

We prove the theorem in Section 2, and give some concluding remarks in Section 3.

2 AN ALGORITHM FOR THE CONNECTION PROBLEM

Given a set P = {p1, . . . , pn} of vertices having c ≥ 2 components, define Z1, Z2, Z3

and Z4 to be the following four coordinate systems, where

1. Zi, i = 1, 2, 3, 4, has all points in P in its first quadrant, with at least one point
in P on its x-axis and at least one point in P on its y-axis, and

2. the directions of the positive x-axes of Z1, Z2, Z3 and Z4 are east, north, west,
and south, respectively, of the global coordinate system.

(All coordinate systems we discuss are right-handed.) See Figure 1.
For i = 1, 2, 3, 4, let [Zi] be the description of the coordinates in Zi of the points

in P under some encoding scheme (e.g., [Zi] lists the coordinates of the points in P

in nondecreasing order of their x-coordinates, and in nondecreasing order of their
y-coordinates for each x-coordinate). We can then order [Z1], [Z2], [Z3] and [Z4]
lexicographically.

Lemma 2. One of the following holds.

1. [Z1], [Z2], [Z3] and [Z4] are all distinct.

2. [Z1] = [Z3] 6= [Z2] = [Z4].

3. [Z1] = [Z2] = [Z3] = [Z4].
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Fig. 1. Coordinate systems Z1, Z2, Z3 and Z4. Hollow circles represent the points in P .

Proof. If [Z1] = [Z3], then P looks the same in Z1 and Z3. So it must also look
the same in Z2 and Z4, and thus [Z2] = [Z4]. If [Z1] = [Z2], then P looks the same
in Z1 and Z2. So it must also look the same in Z2 and Z3, and thus [Z2] = [Z3].
Continuing this argument, we obtain [Z1] = [Z2] = [Z3] = [Z4]. �

In the following, for each of the three possibilities given in Lemma 2 we present
an algorithm for solving the connection problem. We enforce the following rules in
the algorithms. Recall that initially all robots are located at distinct vertices of the
grid.

1. In a single Move step, a robot either remains stationary or moves to a vertex
adjacent to the vertex it currently occupies.

2. A robot that sees another robot r in the interior of an edge (i.e., r is moving)
in a Look step does not move in that cycle. That is, a robot may move in the
Move step of a cycle only if it observes in the Look step a configuration in which
every robot occupies a vertex.

Case 1: [Z1], [Z2], [Z3] and [Z4] are all distinct.

Algorithm 1 (sketch): Suppose [Z1] is the “smallest” among [Z1], [Z2], [Z3] and
[Z4] in the ordering defined above. We then use Z1 to define a set T1 of c − 1
“target points” on its x-axis such that placing a robot at every target point
solves the connection problem for P . (All other cases are handled similarly,
using Z2, Z3 or Z4 instead of Z1.) All references to a coordinate system in the
following refer to Z1. Let C1, C2, . . . , Cc be the components of P . Since at least
one point in P lies on the x-axis, exactly one component has a point on the
x-axis. For each component Cj that does not have a point on the x-axis, let
(xj, yj) be the point in Cj having the smallest y-coordinate among those having
the smallest x-coordinate. We call point (xj, yj) the representative of Cj with
respect to Z1. We define the target point for Cj to be (xj, 0), and say that Cj

contributes (xj, 0) or point (xj, yj) contributes (xj, 0) (in the sense that (xj, 0) is
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a projection of (xj , yj) onto the x-axis of Z1). Let T1 be the set of target points
for all such Cj , where |T1| = c − 1. Placing one robot at each point in T1 (or
“covering T1”) solves the connection problem for P . See Figure 2.
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Fig. 2. Target points in Case 1 shown as solid lozenges. For each target point a dotted line
indicates the point in P that contributes it. The points of P forming a component
are connected by solid line segments.

The overall strategy of the robots (based on the computation described above)
is as follows. Assume that there are at least c − 1 robots. The robots move
to the x-axis one by one according to some deterministic strategy, until c − 1
or more robots lie on the x-axis. Then the robots on the x-axis move on the
x-axis and cover T1. No robot ever moves away from the x-axis while executing
Algorithm 1.

It is not hard to see that an oblivious algorithm can be constructed in the
CORDA model that accomplishes the above without creating multiplicities.
Here is an outline. Suppose that there are fewer than c − 1 robots on the
x-axis. Some deterministic strategy chooses, from among those robots not on
the axis and having no robot between themselves and the axis, a unique robot
that now moves across one edge toward the axis. (The “next” position for the
chosen robot is the vertex adjacent to its current position toward the axis.) The
strategy may first force some robots currently on the axis to move on the axis to
“make room” for the incoming robot. Clearly such a strategy can be designed
so that at any time, exactly one robot is allowed to move to an adjacent empty
vertex and hence no multiplicities will be created. (Of course, a more elaborate
strategy can be constructed that, in certain situations, moves multiple robots
toward the axis concurrently without the risk of creating multiplicities.) Once
a state is reached in which there are at least c−1 robots on the x-axis, the robots
on the axis move on the axis so that every target point in T1 will be occupied
by one robot. This can easily be done by fixing some strategy that assigns the
robots to the target points.
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In summary, P can be connected in Case 1 using m ≥ c − 1 robots. (End of
Case 1.)
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Fig. 3. Division of G into two subgrids G1 and G3 in Case 2. Subgrid G1, shown dark
shaded, contains the part of L shown by the solid line but not the part shown by the
dashed line.

Case 2: [Z1] = [Z3] 6= [Z2] = [Z4].

Algorithm 2 (sketch): Suppose [Z1] = [Z3] < [Z2] = [Z4]. We then use Z1 and
Z3. (The other case is handled similarly using Z2 and Z4.) Let o = (a, b) (in Z1

and Z3) be the point equidistant from the origins of Z1 and Z3, and L the line
through o parallel to the x-axes of Z1 and Z3. (Note that o may or may not be
in G.) Divide G into two subgrids G1 and G3 along L, where the points in G∩L

to the west of o belong to G1, the points in G∩L to the east of o belong to G3,
and o does not belong to either subgrid; see Figure 3. Let T1 be the set of target
points for P computed as in Case 1 using Z1. Similarly, let T3 be the set of
target points for P computed using Z3. All target points in T1 are on the x-axis
of Z1, all target points in T3 are on the x-axis of Z3, and |T1| = |T3| = c − 1.
Let #G1 and #G3 be the numbers of robots (in the current configuration) in
G1 and G3, respectively. We use different strategies depending on m.

2.1: Odd m ≥ c− 1.

2.1.1: If there is a robot r at o (this means that o is a vertex), then we move
r into G1 or G3, and then proceed to 2.1.2. This is done as follows. For
i ∈ {1, 3}, let vi = (a, b− 1) of Zi be the vertex in Gi adjacent to o in the
direction toward the x-axis of Zi (see Figure 3).

1. If #G1 > #G3, then robot r waits at o while the robots in G1 move
within G1 to make v1 empty using some deterministic procedure (if
it is currently occupied), and then moves to v1.

2. Symmetrically, if #G1 < #G3 then r moves to v3 after the robots in
G3 empty v3 by moving within G3.
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3. If #G1 = #G3, then r waits at o until both v1 and v3 become empty
while the robots in G1 and the robots in G3 empty v1 and v3 within
their respective subgrids, and then moves deterministically to one of
them based on its local coordinate system.

Note that in all cases, r leaves o only after all other robots have finished
the procedure of emptying v1 and/or v3. This (together with the fact that
no robot ever moves to o in 2.1.2) ensures that there is no “confusion”
among the robots as to whether they are in 2.1.1 or 2.1.2, regardless of
the delay in their execution cycles.

2.1.2: Suppose there is no robot at o (o may or may not be a vertex). Note
that #G1 6= #G3 since m is odd. We move enough robots to the subgrid
having a larger number of robots and connect P using Algorithm 1 within
that subgrid. This is done as follows. Assume #G1 > #G3. (The case
#G1 < #G3 is handled similarly.) Let T1 be the set of target points on
Z1’s x-axis, where |T1| = c− 1.

a) If #G1 < c−1, then a single robot uniquely identified in G3 moves to
G1 without passing through o, using some deterministic procedure.
Since m ≥ c− 1, eventually we reach 2.1.2 b).

b) If #G1 ≥ c− 1, then the robots in G1 execute Algorithm 1 and cover
T1 without leaving G1. Observe that since the robots never move
away from the x-axis of Z1 during the execution of Algorithm 1, the
conditions #G1 > #G3 and #G1 ≥ c−1 continue to hold (and hence
we remain in 2.1.2 b)) until T1 is covered.

In summary, P can be connected using m robots for any odd m ≥ c − 1.
(End of 2.1.)

2.2: m = 2k ≥ min{n− 1, 2c− 2}.

2.2.1: If there is a robot r at o, then as in 2.1.1, r moves to G1 or G3,
whichever has more robots. We then reach 2.2.2.2.

2.2.2: Suppose there is no robot at o. There are two cases.

2.2.2.1 Suppose #G1 = #G3 = k. As in Case 1, let T1 be the set of
target points for the components of P on Z1’s x-axis. Symmetrically,
let T3 be the set of target points for the components of P on Z3’s
x-axis. Using Algorithm 1, the robots in G1 (resp. G3) cover some of
the target points in T1 (or T3) that are considered “essential”.
Specifically, a component of P is said to be symmetric if it “looks the
same” in Z1 and Z3, i.e., the set of coordinates of the points in it is the
same in Z1 and Z3. Observe that in Case 2, every component C is of
one of the following four types. The target point(s) that C contributes
is (are) designated as essential in some cases, as mentioned below.
(See Figure 4.)

type 1: C is symmetric, has a point on both the x-axis of Z1 and
the x-axis of Z3, and contributes no target point.
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type 2: C is symmetric, has no point on either of the two x-axes,
and contributes exactly two target points t1 ∈ T1 and t3 ∈ T3. The
x-coordinate of t1 in Z1 is the same as that of t3 in Z3. Both t1 and
t3 are designated as essential.

type 3: C is not symmetric, has a point on one of the two x-axes
(but not both), and contributes exactly one target point t, in either
T1 or T3. In Case 2.2.2.1 a) below, t is not designated as essential,
while in Case 2.2.2.1 b) below, t becomes essential.

type 4: C is not symmetric, has no point on either of the two x-axes,
and contributes exactly two target points t1 ∈ T1 and t3 ∈ T3. The
x-coordinate of t1 in Z1 and that of t3 in Z3 are different. Whichever
of the two having a smaller x-coordinate is designated as essential.

(a)
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Fig. 4. Essential target points in a) Case 2.2.2.1 a) and b) Case 2.2.2.1 b)

2.2.2.1 a): If there exists at least one symmetric component, then
covering all essential target points connects all components. This
is because of the following (see Figure 4 a)):

• Every component either contains a point or has an essential tar-
get point on one of the two x-axes.

• The points on the two x-axes either belong to one symmetric
component or are connected through a symmetric component
and its two essential target points.

The number of essential target points is at most n− 1, because, of
the n points of P , at least two points that lie on the x-axis of Z1

or Z3 do not contribute any essential target point, and any other
point contributes at most one essential target point, except if there
is a point at o that forms a component by itself; then it contributes
two essential target points, one in T1 and another in T3. Also, the
number of essential target points is at most |T1∪T3| = 2c−2. Thus
the above strategy works for any even m ≥ min{n − 1, 2c− 2}.
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2.2.2.1 b): Suppose no symmetric component exists. Then, since
the x-axis of every Zi contains at least one point of P , there exist
exactly two components of type 3, C ′ having a point on the x-axis
of Z1 and C ′′ having a point on the x-axis of Z3. Covering the
essential target points that C ′ and C ′′ contribute in the description
of type 3 connects the points of P on the x-axis of Z1 and the points
of P on the x-axis of Z3. Thus covering all essential target points,
including those that C ′ and C ′′ contribute, connects all components
(see Figure 4 b)).
Since every component contributes exactly one essential target
point, the total number of essential target points is c, and thus
the strategy works for any even m ≥ c.

2.2.2.2: If #G1 6= #G3, then we proceed as in Case 2.1.2. That is, we
move enough robots to the subgrid having more robots and connect P
within that subgrid using Algorithm 1. It is sufficient to have m ≥
c− 1 robots to do so.

The number of robots needed is c− 1 in 2.1, min{n− 1, 2c− 2} in 2.2.2.1 a),
c in 2.2.2.1 b), and c− 1 in 2.2.2.2. Note that

1. 2c− 2 ≥ c > c− 1 for c ≥ 2, and
2. in 2.2.2.1 b) n is even1 and hence any even m ≥ n−1 satisfies m ≥ n ≥ c.

Thus P can be connected using m robots for any even m ≥ min{n−1, 2c−2}.
(End of 2.2.)

In summary, P can be connected by m robots for any odd m ≥ c − 1 and any
even m ≥ min{n− 1, 2c− 2}. (End of Case 2.)

Remark 3. One can easily construct an instance in Case 2 in which c = n and
hence n − 1 robots are necessary. Figure 5 shows an instance in 2.2.2.1 a) in which
n = 18, c = 4 and the positions of the 2c− 4 = 4 robots are symmetric with respect
to o. Using any deterministic algorithm, starting from this configuration the robots
may always move symmetrically with respect to o and fail to connect all components.
Thus if the number of robots is even, then 2c− 2 robots are sometimes necessary.

Case 3: [Z1] = [Z2] = [Z3] = [Z4].

Algorithm 3 (sketch): Roughly speaking, we do as in Case 2 using all four co-
ordinate systems Z1, Z2, Z3 and Z4. Given P , we compute the set of target
points T1, T2, T3 and T4, in terms of Z1, Z2, Z3 and Z4, respectively, where
|T1| = |T2| = |T3| = |T4| = c− 1. Next, we define four subgrids G1, G2, G3 and
G4 as shown in Figure 6, where point o = (a, a) (in any Zi) does not belong to
any subgrid. Let #Gi be the number of robots (in the current configuration)
in Gi, i = 1, 2, 3, 4.

1 In Case 2, if n is odd then o ∈ P , which implies the existence of a symmetric compo-
nent.
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Fig. 5. An instance in which 2c− 4 robots are not enough to connect P in Case 2.2.2.1 a).
Here c = 4 and the black squares are the robots’ positions.
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Fig. 6. Division of G into four subgrids G1, G2, G3 and G4 in Case 3. Subgrid G1 is shown
dark shaded.

We give a brief outline. First, if o is a vertex and there is a robot r at o, then
we move it to one of the subgrids G1, G2, G3 and G4. If o is empty and it is
possible to uniquely identify one of the subgrids having the largest number of
robots, say Gi, based on #G1, #G2, #G3 and #G4, then we move enough robots
to Gi and connect P within Gi by covering Ti using Algorithm 1. If on the other
hand (due to symmetry) it is not possible to uniquely identify a subgrid, then we
either connect P (i) in two opposite subgrids (G1 and G3, or G2 and G4) after
moving enough robots there, or (ii) in all four subgrids, again using Algorithm 1
in each of these subgrids. When moving robots between subgrids, care must
be taken so that there will be no “confusion” as to which robots are allowed to
change subgrids, regardless of the delays in the robots’ execution cycles.

Specifically, we connect P using m robots as follows.

3.1: Odd m ≥ c− 1.

3.1.1: Suppose that there is a robot, say r, at o. (This means that o is a ver-
tex.) We first move r into one of the subgrids having the largest number
of robots. This is done as follows. For i = 1, 2, 3, 4, let vi = (a, a − 1)
of Zi be the vertex in Gi adjacent to o in the direction toward the x-axis
of Zi (see Figure 6). Robot r waits at o until vertex vi becomes empty in
every subgrid Gi that currently has the largest number of robots. Mean-
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while, in each such subgrid Gi the robots move deterministically to make
vi empty without leaving Gi. Once these vi’s become all empty, r moves
to one of them breaking ties deterministically based on its coordinate
system. We then proceed to 3.1.2.

3.1.2: Suppose there is no robot at o (o may or may not be a vertex).
We uniquely identify one of the subgrids having the largest number of
robots, as follows: Gi is identified uniquely if and only if it maximizes the
sum #Gi + #Gi+1 + #Gi+2 over all subgrids having the largest number
of robots.2 (In Case 3 the indices are taken cyclically over 1, 2, 3, 4.)
Now, let G1 be the subgrid so identified. (The other cases are handled
similarly.) Our goal is to move enough robots to G1 while keeping o

empty, and connect P using Algorithm 1 with respect to Z1, by covering
the target points in T1 on Z1’s x-axis. Note that point (2a, 0) of Z1, which
belongs to G2, but not to G1, may or may not be in T1.

3.1.2.1: (2a, 0) 6∈ T1.

a) If #G1 < c− 1 (and thus #G2 + #G3 + #G4 ≥ 1), then a single
robot moves to G1 from G2, G3 or G4. (We proceed to 3.1.2.1 b)
when #G1 increases to c − 1.) This is accomplished as follows, so
that G1 will continue to be uniquely identified:

1. If #G2 > 0 then a single robot uniquely identified in G2 moves
to G1;

2. if #G2 = 0 and #G3 > 0 then a single robot uniquely identified
in G3 moves to G2;

3. if #G2 = #G3 = 0 and #G4 > 0 then a single robot uniquely
identified in G4 moves to G3.

b) If #G1 ≥ c − 1, then the robots in G1 execute Algorithm 1 and
cover T1 without leaving G1.

3.1.2.2: (2a, 0) ∈ T1.

a) If #G1 < c− 2 (and thus #G2 + #G3 + #G4 ≥ 2), then a single
robot moves to G1 from G2, G3 or G4, as in 3.1.2.1 a).

b) If #G1 ≥ c− 2, #G2 + #G3 + #G4 ≥ 1 and (2a, 0) is empty, then
a single robot moves to (2a, 0) from G2, G3 or G4, using a strategy
similar to that used in 3.1.2.1 a).

c) If #G2 + #G3 + #G4 = 0 (and thus #G1 = m ≥ c − 1 and
(2a, 0) ∈ G2 is empty), then a single robot in G1 moves to (2a, 0).
(#G1 > #G2 continues to hold after the move, because (2a, 0) ∈ T1

implies c ≥ 4 in Case 3.)

2 It is easy to show that if #G1 +#G2 +#G3 +#G4 is odd, then the “sum-of-three”
condition uniquely identifies a subgrid among those having the largest number of robots.
We omit the details. Note that if we reach 3.1.2 from 3.1.1, then there is a unique subgrid
having the largest number of robots.
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d) If none of the above applies, i.e., if #G1 ≥ c − 2 and (2a, 0) is
occupied, then the robots in G1 cover the target points in T1 except

(2a, 0), by executing Algorithm 1 without leaving G1.

Thus P is connected by m robots for any odd m ≥ c− 1. (End of 3.1)

3.2: m = 4k + 2 ≥ min{n − 1, 2c− 2}.

3.2.1: If there is a robot, say r, at o = (a, a), then r moves to the unique
subgrid Gi that maximizes the sum #Gi + #Gi+1 + #Gi+2 among the
subgrids having the largest number of robots.3 (This may require the
robots in Gi to first move deterministically within Gi to make vertex vi
empty, as in 3.1.1.)
Let us assume without loss of generality that G1 is the subgrid uniquely
identified above into which r moves and discuss which of the four cases
of 3.2.2 applies after the move. Since G1 has more robots than any other
subgrid after the move, 3.2.2 a) and 3.2.2 c) do not apply. 3.2.2 b) does not
apply either, because that would imply #G1 = #G3 and #G1 + #G2 +
#G3 > #G3 + #G4 + #G1 before the move, and hence, #G2 > #G4

after the move. Therefore, the configuration resulting from the move falls
under 3.2.2 d).

3.2.2: Suppose there is no robot at o, and assume without loss of generality
that #G1 ≥ #G2,#G3,#G4.

4

a) If c − 1 > #G1 = #G3 > #G2 = #G4 > 0, then a robot, say r2,
uniquely identified in G2 moves to G1, and a robot, say r4, uniquely
identified in G4 moves to G3. Note that if both r2 and r4 observe
the current configuration in 3.2.2 a) and, for instance, both complete
the respective moves before any other robot executes the Look step,
then we arrive at a configuration in 3.2.2 a) again (or 3.2.2 c)) with
one more robots than before in both G1 and G3. However, due to the
delay in the robots’ execution cycles, it is possible that only one of
r2 and r4 observes the current configuration in 3.2.2 a) and completes
the required move (yielding a configuration in 3.2.2 b) given below), or
both observe it in 3.2.2 a) but one of them, say r4, starts the move long
after the other robot r2 has finished the move and hence some robots
observe a configuration in 3.2.2 b) in which r4 has already “decided”
to move to G3. For this reason, although in 3.2.2 b) one subgrid
contains more robots than any other subgrid and hence it appears as
if we could move enough robots to that subgrid and connect P there,
we must instead “restore” 3.2.2 a) (or arrive at 3.2.2 c)) by allowing
only one robot (in fact, robot r4 in the above scenario) to move from
G4 to G3.

3 Since #G1 +#G2 +#G3 +#G4 is odd, the condition uniquely identifies a subgrid.
See the previous footnote.

4 Here, G1 can be any of the subgrids having the largest number of robots.
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b) If c− 1 ≥ #G1 = #G3 + 1, #G3 > #G4, and #G4 = #G2 + 1, then
one robot in G4 moves to G3. The robot in G4 that moves to G3

is the robot (called r4 above) that moves from G4 to G3 in 3.2.2 a).
As explained above, this rule ensures that the resulting configuration
satisfies #G1 = #G3 > #G2 = #G4 and falls under 3.2.2 a) or
3.2.2 c), regardless of the delays in the robots’ execution cycles.

c) If #G1 = #G3 ≥ c− 1 and #G2 = #G4, then as in 2.2.2.1, for both
i = 1 and 3 the robots in Gi cover the essential target points in Ti

on the x-axis of Zi by executing Algorithm 1 without leaving Gi. We
remark that when we apply 2.2.2.1 in Case 3, for i = 1 and 3, (2a, 0)
of Zi is not an essential target point5 and hence the robots in Gi need
not leave Gi.

d) If none of 3.2.2 a), b) and c) applies, then there exists a unique subgrid
Gi that maximizes the sum #Gi+#Gi+1+#Gi+2 among the subgrids
having the largest number of robots.6 The robots move to this Gi as
necessary and connect P using Algorithm 1, as in 3.1.2. We point out
that once the robots start executing Algrithm 1, none of 3.2.2 a), b)
and c) will apply.

The number of robots needed is min{n − 1, 2c − 2} in 3.2.2 c) (as in 2.2),
and c− 1 in 3.2.2 d) (as in 3.1.2). Thus P is connected by m robots for any
m = 4k + 2 ≥ min{n − 1, 2c− 2}. (End of 3.2.)

3.3: m = 4k ≥ min{n− 1, 4c− 4}.

3.3.1: If there is a robot at o, then we proceed as in 3.2.1 (and then as
in 3.2.2 d), and eventually as in 3.1.2). This works for any m = 4k ≥
c− 1.

3.3.2: Suppose there is no robot at o.

3.3.2.1 If #G1 = #G2 = #G3 = #G4 = k, then the robots in each
subgrid cover certain “essential” target points in their subgrid as de-
scribed below.
A component of P is said to be symmetric if it “looks the same” in
Z1, Z2, Z3 and Z4, i.e., the set of coordinates of the points in it is the
same in Z1, Z2, Z3 and Z4. Observe that in Case 3 every component C
is of one of the following six types. The target point(s) that C con-
tributes is/are designated as essential in some cases, as mentioned
below. (See Figure 7.) As in Case 3.2.2 c), for i = 1, 2, 3 and 4,

5 In 2.2.2.1, vertex (2a, 0) of Z1 can be an essential target point only if there is a non-
symmetric component C of type 3 that entirely lies on the x-axis of Z2 and that includes

vertex (0, 0) of Z3. In Case 3, however, there exist four copies of C, all connected via
(0, 0) of Z1, Z2, Z3 and Z4. Thus C does not entirely lie on the x-axis of Z2. This is
a contradiction, and hence such C cannot exist.

6 Again, we omit the proof of the fact that if #G1 +#G2 +#G3 +#G4 = 4k + 2 and
none of 3.2.2 a), b) and c) applies, then the condition uniquely identifies a subgrid.
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(2, a) of Zi never becomes an essential target point in Ti, and thus
the robots in Gi do not need to leave Gi.

type 1: C is symmetric, has a point on the x-axis of each of Zi,
i = 1, 2, 3, 4, and contributes no target point.

type 2: C is symmetric, has no point on any of the four x-axes, and
contributes exactly four target points t1 ∈ T1, t2 ∈ T2, t3 ∈ T3

and t4 ∈ T4, all having the same x-coordinate in their respective
coordinate systems Z1, Z2, Z3 and Z4. All four are designated as
essential.

type 3: C is not symmetric, has a point on the x-axis of Zi and
the x-axis of Zi+2 for some i (but not on the other two x-axes),
and contributes exactly two target points, ti+1 = (0, 0) ∈ Ti+1 and
ti+3 = (0, 0) ∈ Ti+3. In 3.3.2.1 a) below, ti+1 and ti+3 are not
designated as essential, while in 3.3.2.1 b), ti+1 and ti+3 become
essential.

type 4: C is not symmetric, has a point on the x-axis of only one Zi,
and contributes exactly three target points, ti+1 = (0, 0) ∈ Ti+1,
ti+2 ∈ Ti+2 and ti+3 ∈ Ti+3. In 3.3.2.1 a) below, none of these
points is designated as essential, while in 3.3.2.1 b), ti+1 becomes
essential.
Observe that a component of type 3 and a component of type 4
cannot exist simultaneously. The total number of additional essen-
tial target points contributed by the components of type 3 or type
4 in 3.3.2.1 b) is four.

type 5: C is not symmetric, has no point on any of the four x-
axes, and contributes exactly four target points t1 ∈ T1, t2 ∈ T2,
t3 ∈ T3 and t4 ∈ T4, where t1 and t3 have the same x-coordinate
(in their respective coordinate systems Z1 and Z3), and t2 and t4
have the same x-coordinate (in their respective coordinate systems
Z2 and Z4) that is different from the x-coordinate of t1 and t3.
The two target points among the four (either t1 and t3, or t2 and
t4) that have the smaller x-coordinates are designated as essen-
tial.

type 6: C is not symmetric, has no point on any of the four x-axes,
and contributes exactly four target points t1 ∈ T1, t2 ∈ T2, t3 ∈ T3

and t4 ∈ T4, all having distinct x-coordinates in their respective
coordinate systems. The one among t1, t2, t3 and t4 having the
smallest x-coordinate is designated as essential.

3.3.2.1 a): If there is at least one symmetric component, then cover-
ing all essential target points connects all components. This follows
from the following two facts (see Figure 7 a)).

• Every component either contains a point or contributes an es-
sential target point on one of the four x-axes.
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Fig. 7. Essential target points in a) 3.3.2.1 a) and b) 3.3.2.1 b)

• The points on the four x-axes either belong to one symmetric
component or are connected through a symmetric component
and its four essential target points.

Again, a simple counting argument shows that the total number
of essential target points is at most n − 1: At least four of the
n points in P contribute no essential target point because they
lie on one of the four x-axes, and any other point contributes at
most one essential target point, except if there is a point at o that
forms a component by itself; then it contributes four essential tar-
get points, one in each Ti, i = 1, 2, 3, 4. Also, the total number of
essential target points is at most 4c − 4. Thus the strategy works
for any m = 4k ≥ min{n− 1, 4c− 4}.

3.3.2.1 b): If no symmetric component exists, then we cover all es-
sential target points, including the four additional ones designated
for the type 3 or 4 components above (see Figure 7 b)). Cover-
ing the four additional essential target points connects, for each
i = 1, 2, 3, 4, the component having a point on the x-axis of Zi

and the component having a point on the x-axis of Zi+1. All
other components are connected to one of these (four) components
via their essential target points. Thus all components are con-
nected.
The total number of essential target points is at most 2c because
every component contributes at most two essential points, and at
most n because each point contributes at most one target point.
Thus the strategy works for any m = 4k ≥ min{n, 2c}.
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3.3.2.2 If #G1, #G2, #G3 and #G4 are not all equal, then we pro-
ceed as in 3.2.2.7 This works for any m = 4k ≥ min{n − 1, 2c −
2}.

The number of robots needed is c−1 in 3.3.1, min{n−1, 4c−4} in 3.3.2.1 a),
min{n, 2c} in 3.3.2.1 b), and min{n− 1, 2c− 2} in 3.3.2.2. Note that

1. 4c− 4 ≥ 2c > 2c− 2 > c− 1 for c ≥ 2, and
2. in 3.3.2.1 b) n is a multiple of 48 and hence any m = 4k ≥ n− 1 satisfies

m ≥ n.

Thus P can be connected using m robots for any m = 4k ≥ min{n−1, 4c−4}.
(End of 3.3.)

In summary, P can be connected using m robots for any odd m ≥ c − 1, any
m = 4k + 2 ≥ min{n− 1, 2c− 2}, and any m = 4k ≥ min{n− 1, 4c− 4}. (End
of Case 3.)

Remark 4. Figure 8 shows instances that demonstrate the tightness of the bounds
obtained for 3.2, 3.3.2.1 a) and 3.3.2.1 b); notice that in Case 3, n = 0, 1 mod 4.
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Fig. 8. a) Case 3, in which c = n, and so n− 1 robots are required. b) Case 3.2 in which
2c− 4 robots are not enough to connect P having c = 4. c) Case 3.3.2.1(a) in which
4c− 8 robots are not enough to connect P having c = 4. d) Case 3.3.2.1(b) in which
2c− 4 robots are not enough to connect P having c = 6; notice that c is even, and so
2c− 2 = 2 mod 4.

7 Again, we omit the proof of the fact that if #G1+#G2+#G3+#G4 = 4k and none
of 3.2.2 a), b) and c) applies, then the condition of 3.2.2 d) uniquely identifies a subgrid.

8 In Case 3, if n is not a multiple of 4, then o ∈ P , which implies the existence of
a symmetric component.
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Theorem 1 follows from the discussion given above. Note that the three algo-
rithms can be combined into one, because the robots can always decide which of
the three cases applies, and obviously, such an algorithm can be constructed in the
CORDA model.

3 CONCLUDING REMARKS

We presented a distributed algorithm for connecting a given set of grid vertices
under straight-line visibility using a number of autonomous mobile robots that can
function as relays. The number of robots required for an input set P critically
depends on the type of symmetry of P . It is worth pointing out that if the robots’
local coordinate systems do not agree on the orientation, then creating a multiplicity
may be unavoidable when solving the connection problem. See Figure 9 for such
an example.
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Fig. 9. To connect the two components, a robot must move to either row lh or column lv.
If the local coordinate systems of r1 and r3 are right-handed and those of r2 and r4
are left-handed, then it is possible that r1 and r3 always move symmetrically with

respect to o, r2 and r4 always move symmetrically with respect to o, and r1 and r2
always move symmetrically with respect to lv. This means that a multiplicity can be
created when a robot reaches lh or lv.

For future study, the connection problem can be considered in the 2D plane un-
der a suitable assumption on the module’s communication capabilities. For instance,
the plane may contain polygonal obstacles that block visibility and two modules can
communicate with each other if and only if they see each other within a certain dis-
tance (for a relevant variant in wireless sensor networks, see for example [5, 6]).
One can also consider the problem of constructing a “fault-tolerant” network, where
the objective is to establish k ≥ 2 disjoint paths between any two components. In
wireless sensor networks, a variation of this problem has been studied in both static
and dynamic settings [1, 14, 15, 16].
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[13] English, J.—Wiacek, M.—Younis, M.: CORE: Coordinated Relocation of Sink

Nodes in Wireless Sensor Networks. Proceedings of the 23rd Biennial Symposium on
Communications, 2006, pp. 320–323.

[14] Han, X.—Cao, X.—Lloyd, E. L.—Shen, Ch.-Ch.: Fault-Tolerant Relay Nodes

Placement in Heterogeneous Wireless Sensor Networks. IEEE Transactions on Mobile
Computing, Vol. 9, 2010, No. 5, pp. 643-656.

[15] Hao, B.—Tang, J.— Xue, G.: Fault-Tolerant Relay Node Placement in Wireless

Sensor Networks: Formulation and Approximation. Proceedings of the Workshop on
High Performance Switching and Routing, 2004, pp. 246–250.

[16] Kashyap, A.—Shayman, M.: Relay Placement and Movement Control for Realiza-
tion of Fault-Tolerant Ad-Hoc Networks. Proceedings of the 41st Annual Conference

on Information Sciences and Systems, 2007, pp. 783–788.

[17] Kranakis, E.—Krizanc, D.—Markou, E.: Mobile Agent Rendezvous in a Syn-
chronous Torus. LATIN ’06, Lecture Notes in Computer Science, Vol. 3887, 2006,

pp. 653–664.

[18] Kranakis, E.—Krizanc, D.—Santoro, N.—Sawchuk, C.: Mobile Agent Ren-
dezvous in the Ring. Proceedings of the 23rd International Conference on Distributed

Computing Systems, ICDCS ’03, 2003, pp. 592–599.

[19] Kranakis, E.—Krizanc, D.—Rajsbaum, S.: Mobile Agent Rendezvous: A Sur-
vey. SIROCCO ’06, Lecture Notes in Computer Science, Vol. 4056, 2006, pp. 1–9.

[20] Lulu, L.—Elnagar, A.: Efficient and Complete Coverage of 2D Environments by
Connectivity Graphs for Motion Planning Algorithms. Journal of Information Science
and Engineering, Vol. 22, 2006, No. 6, pp. 1355–1366.

[21] Lulu, L.—Elnagar, A.: An Art Gallery-Based Approach: Roadmap Construction
and Path Planning in Global Environments. International Journal of Robotics and
Automation, Vol. 22, 2007, No. 4, pp. 329–339.

[22] Prencipe, G.: On the Feasibility of Gathering by Autonomous Mobile Robots.
SIROCCO ’05, Lecture Notes in Computer Science, Vol. 3499, 2005, pp. 246–261.

[23] Sugihara, S.—Suzuki, I.: Distributed Algorithms for Formation of Geometric
Patterns With Many Mobile Robots. Journal of Robotic Systems, Vol. 13, 1996,
No. 3, pp. 127–139.

[24] Suzuki, I.—Yamashita, M.: Distributed Anonymous Mobile Robots – Forma-
tion of Geometric Patterns. SIAM Journal on Computing, Vol. 28, 1999, No. 4,
pp. 1347–1363.

[25] Younis, M.—Akkaya, K.: Strategies and Techniques for Node Placement in
Wireless Sensor Networks. The Journal of Ad Hoc Networks, Vol. 6, 2008, No. 4,
pp. 621–655.



A Point Set Connection Problem for Autonomous Mobile Robots in a Grid 369

Adrian Kosowski received his Ph.D. degree in computer scien-
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terests include graph theory and computational geometry.


