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Abstract. Swarm Intelligence (SI) is an innovative distributed intelligent paradigm
whereby the collective behaviors of unsophisticated individuals interacting locally
with their environment cause coherent functional global patterns to emerge. Al-
though the swarm algorithms have exhibited good performance across a wide range
of application problems, it is difficult to analyze the convergence. In this paper,
we discuss the dynamic trajectory and convergence of the swarm intelligent model,
namely the particle swarm algorithm. We explore the tradeoff between exploration
and exploitation using differential analysis and Laplace transform. The trajecto-
ries are parsed into first-order inertial element and second-order oscillation ele-
ment. Their transfer functions are derived, and the trajectories are described in
explicit time functions. The first-order inertial element is helpful to maintain the
trajectory’s stability and algorithm convergence, while the second-order oscillation
element trends to explore some new search spaces for the better solutions. The
convergence regions of the swarm system are analyzed using the spectral radius and

Lyapunov second theorem on stability.
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1 INTRODUCTION

Swarm Intelligence (SI) is mainly inspired by social behaviour patterns of organisms
that live and interact within large groups of unsophisticated autonomous individuals.
In particular, it incorporates swarming behaviours observed in flocks of birds, schools
of fish, or swarms of bees, colonies of ants, and even human social behavior, from
which the intelligence is emerged [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. SI provides a framework
to explore distributed problem solving without centralized control or the provision
of a global model. The particle swarm model helps find optimal regions of complex
search spaces through interaction of individuals in a population of particles [11]. It
has exhibited good performance across a wide range of applications [12, 13, 14, 15,
16, 17, 5, 18, 19, 20, 21, 22, 23, 6, 24, 21, 25, 26, 27].

However, the executing efficiency and effectiveness of the algorithms are ignored
in many important works, since it is difficult to evaluate the performance and conver-
gence of considered algorithms. In the swarm intelligent model, its intelligent search
must combine exploration of the new regions of the search space with evaluation of
potential solutions already identified. Its performance and convergence are involved
with the balancing exploration with exploitation. The exploitation of the swarm
model emphasizes on searching around the best positions. In the swarm model, the
good positions are the best position which each particle has found. Too much stress
on exploration results in a pure random search whereas too much exploitation results
in a pure local search. It is a fundamental problem in nature-inspired systems – the
balance of system resources between exploration of the search space and exploitation
of potentially good problem solutions. Particle swarm optimization is also believed
to find an effective exploration/exploitation ratio. But it indeed strikes an effective
exploration/exploitation balance and if so there are common principles that could
provide a theoretical justification for this characteristic [28, 29].

In this paper, the dynamic trajectory and convergence of the swarm intelligent
model, namely the particle swarm algorithm, are discussed in detail. We explore the
particle’s trajectory further using differential analysis and Laplace transform. The
trajectories are parsed into first-order inertial elements and second-order oscillation
element. Inertial elements of the trajectories are analyzed through the first-order
differential equations, which depict the trajectories’ tendency in one time-step. The
trajectories exhibit oscillation element in the long times sense, which is implied in
the first-order differential equations. Their transfer functions are derived, and the
trajectories are described in explicit time functions. The first-order inertial element
is helpful to maintain the trajectory’s stability and algorithm convergence, while
the second-order oscillation element trends to explore some new search spaces for
the better solutions. The tradeoff between exploration and exploitation is crucial in
search and optimization. The convergence regions of the swarm system are analyzed
using the dynamical system theory. We proof the necessary and sufficient conditions
of the convergence and the convergence regions are also illustrated.

The rest of the paper is organized as follows. Related works about dynamic
trajectory and convergence analysis of swarm algorithm are reviewed in Section 2.
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Particle swarm model is presented in Section 3. We analyse the first-order inertial
element of the dynamic trajectories in Section 4. Two-order oscillation element
of the swarm system is investigated using the second-order difference equations in
Section 5. In Section 6, we discuss the convergence regions of the swarm system
using the spectral radius and Lyapunov second theorem on stability, and finally
conclusions are given in Section 7.

2 RELATED WORKS

The particle swarm algorithm has been applied to many real-world problems; but it
is difficult to analyze the performance, stability and efficiency. What’s more, some-
time the algorithm has to be improved for the special applications [30, 31, 32, 33].
Many researchers explore the parameter selection, improvement guide, and mecha-
nism analysis empirically and theoretically. Clerc and Kennedy analyze a particle’s
trajectory in discrete time and in continuous time. A five-dimensional depiction is
developed, which describes the system completely. This analysis leads to a genera-
lized model of the algorithm, containing a set of coefficients to control the system’s
convergence tendencies. Some results of the particle swarm optimizer, implementing
modifications derived from the analysis, suggest methods for altering the original
algorithm in ways that eliminate problems and increase the ability of the particle
swarm to find optima of some well-studied test functions [11]. Ozcan and Mohan
analyze closed form equations of particle swarm optimization algorithm for trajec-
tories of particles in a multi-dimensional search space. The results show that in
the general case, a particle does not “fly” in the search space, but rather “surfs”
it on sine waves [34]. Trelea analyzes the particle swarm optimization algorithm
using standard results from the dynamic system theory. Graphical parameter selec-
tion guidelines are derived. The exploration-exploitation tradeoff is discussed and
illustrated [35]. Chen et al. investigate stabilities of the algorithm with constant
parameters and time-varying parameters without Lipschitz constraint. Necessary
and sufficient stability conditions for acceleration factor and inertia weight are pre-
sented [36]. Tan et al. analyse the evolutionary trajectories and the convergence
properties based on the discrete time linear system theory, and the conditions for
choosing the parameters are given [37]. Yasuda and Iwasaki analyse the stability
analysis in order to obtain an understanding about how it searches a globally opti-
mal solution and strategies about how to tune its parameters. Their work is carried
out on the basis of both the eigenvalue analysis and the bounded input bounded
output stability [38]. Van den Bergh and Engelbrecht overview the theoretical stud-
ies, and extend these studies to investigate particle trajectories for general swarms
to include the influence of the inertia term. They also provide a formal proof that
each particle converges to a stable point [39]. Kadirkamanathan et al. present the
stability analysis of the particle swarm optimizer without this restrictive assump-
tion using Lyapunov stability analysis and the concept of passive systems. Sufficient
conditions for stability are derived [40]. Li et al. present the stability of particle’s
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trajectory in particle swarm through difference equation and Z transform. They
also discuss the influences of pBest, gBest and randomicity on particle’s trajectory,
and analyze the relationship between trajectory’s stability and algorithm conver-
gence [41]. Abraham et al. introduce some of the theoretical foundations of swarm
intelligence. The design and implementation of the particle swarm optimization and
ant colony optimization algorithms are provided for various types of function op-
timization problems, real world applications and data mining. Jiang et al. present
a formal stochastic convergence analysis of the standard particle swarm optimiza-
tion algorithm, which involves randomness. The stochastic convergent condition
of the particle swarm system and corresponding parameter selection guidelines are
derived [42]. Liu et al. [43] investigate the chaotic dynamic characteristics in swarm
intelligence. The swarm intelligent model, namely the particle swarm (PS) is rep-
resented as an iterated function system. The dynamic trajectory of the particle
is sensitive to the parameter values. The Lyapunov exponent and the correlation
dimension are calculated and analyzed numerically for the dynamic system. The
research results illustrate that performance of the swarm intelligent model depends
on the sign of the maximum Lyapunov exponent. The particle swarm with a high
maximum Lyapunov exponent usually achieves better performance, especially for
multi-modal functions. Poli and Broomhead prevent the exact characterization of
the sampling distribution of the swarm model [44]. Samal et al. present an alterna-
tive formulation of the PSO dynamics by a closed loop control system, and analyze
the stability behavior of the system by using Jury’s test and root locus technique [45].
Mart́ınez and Gonzalo investigate stability, convergence and parameters for a gene-
ralized form of the particle swarm optimization algorithm presented [46]. Rapaić
and Kanović investigate a formal convergence analysis of the conventional swarm
algorithms with time-varying parameters. Several new schemes for parameter ad-
justment are introduced [47]. There are still two problems: why would the algorithm
converge? And how to maintain the tradeoff between exploration and exploitation in
the swarm model? It is necessary to investigate them from an explicitly theoretical
rather than only heuristic perspective. In this paper, we discuss the dynamic tra-
jectory and convergence of the swarm intelligent model, namely the particle swarm
algorithm using differential analysis and Laplace transform.

3 SWARM ALGORITHM

A particle swarm model consists of a swarm of particles moving in a d-dimensional
search space where the fitness f can be calculated as a certain quality measure.
Each particle has a position represented by a position-vector ~xi (i is the index of the
particle), and a velocity represented by a velocity-vector ~vi. Each particle remembers
its own best position so far in a vector ~pi, and its jth dimensional value is pi,j . The
best position from the swarm thus far is then stored in a vector ~pg, and its jth

dimensional value is pg,j. During the iteration time t, the update of the velocity
from the previous velocity is determined by Equation (1a). Subsequently, the new
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position is determined by the sum of the previous position and the new velocity by
Equation (1b)

vi,j(t) = ωvi,j(t− 1) + c1r1(pi,j(t− 1)− xi,j(t− 1)) (1a)

+ c2r2(pg,j(t− 1)− xi,j(t− 1))

xi,j(t) = xi,j(t− 1) + vi,j(t) (1b)

where r1 and r2 are the random numbers, uniformly distributed within the inter-
val [0, 1] for the jth dimension of ith particle; c1 is a positive constant termed the
coefficient of the self-recognition component; c2 is a positive constant termed the
coefficient of the social component. The variable ω is the inertia factor, whose value
is typically set up to vary linearly from 1 to 0 during the iterated processing. From
Equation (1a), a particle decides where to move next, considering its own experience,
which is the memory of its best past position, and the experience of its most suc-
cessful particle in the swarm. In the particle swarm model, the particle searches the
solutions in the problem space within a range [−s, s] (If the range is not symmetri-
cal, it can be translated to the corresponding symmetrical range.) The pseudo-code
for particle-search is illustrated in Algorithm 1.

Algorithm 1 Particle Swarm Algorithm

01. Initialize the size of the particle swarm n, and other
01. parameters; Initialize the positions and the velocities
01. for all the particles randomly.
02. While (the end criterion is not met) do
03. t = t+ 1;
04. Calculate the fitness value of each particle;
05. ~pg(t) = argminn

i=1(f(~pg(t− 1), f(~p1(t)),
05. f(~p2(t)), . . . , f(~pi(t)), . . . , f(~pn(t)));
06. For i= 1 to n

07. ~pi(t) = argminn
i=1(f(~pi(t− 1)), f(~pi(t));

08. For j = 1 to d

09. Update the jth dimension value of ~xi and ~vi
09. according to Equations (1a) and (1b);
10. Next j
11. Next i
12. End While.

The particle swarm algorithm can be described generally as a population of
vectors whose trajectories oscillate around a region which is defined by each individ-
ual’s previous best success and the success of some other particle. The trajectory
of a single particle is illustrated in Figure 1. Eberhart and Kennedy called the two
basic methods “gbest model” and “lbest model” [2]. Some previous studies have
shown that gbest model converges quickly on problem solutions but has a weakness
in becoming trapped in local optima, while lbest model converges slowly on prob-
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lem solutions but is able to “flow around” local optima, as the individuals explore
different regions [48, 49].
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Fig. 1. Trajectory of a single particle

4 FIRST-ORDER INERTIAL ELEMENT

Observing Equation (1a), the particle decides where to move next, considering its
own experience, which is the memory of the best past position, and the experience
of the most successful particle in the swarm. We split the three terms in the RHS
of Equation (1a) into three equations:

vi,j(t) = γ1,1ωvi,j(t− 1) (2)

vi,j(t) = γ1,2c1r1(pi,j(t− 1)− xi,j(t− 1)) (3)

vi,j(t) = γ1,3c2r2(pg,j(t− 1)− xi,j(t− 1)) (4)

where γ1,1, γ1,2 and γ1,3 are the component constants within the interval [0, 1]. Let
τ1,1 = γ1,1ω, τ1,2 = γ1,2c1r1 and τ1,3 = γ1,3c2r2, reduce to a single dimension, and
refer to Equation (1b), Equations (2), (3) and (4) can be deformed into one velocity
equation and two difference equations as follows:

vi,j(t) = τ1,1vi,j(t− 1) (5)

xi,j(t)− xi,j(t− 1) = τ1,2(pi,j(t− 1)− xi,j(t− 1)) (6)

xi,j(t)− xi,j(t− 1) = τ1,3(pg,j(t− 1)− xi,j(t− 1)) (7)
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Applying the Laplace transform to Equations (3) and (4), yield Equations (8)
and (9), and rearranging results in Equations (10) and (11).

sXi(s) + τ1,2Xi(s) = τ1,2Pi(s) (8)

sXi(s) + τ1,3Xi(s) = τ1,3Pg(s) (9)

G1,1(s) =
Xi(s)

Pi(s)
=

τ1,2

s+ τ1,2
(10)

G1,2(s) =
Xi(s)

Pg(s)
=

τ1,3

s+ τ1,3
(11)

Taking the inverse Laplace transform, we can obtain: Equations (12) and (13).

g1,2(t) = L−1{G1,1(s)}(t) = τ1,2e
−τ1,2t (12)

g1,2(t) = L−1{G1,2(s)}(t) = τ1,3e
−τ1,3t (13)

As illustrated in Equation (5), the velocity of the particle in the swarm model
implies the inertial element. When τ1,1 < 1, the velocity would be decreased gradu-
ally. The trajectories also contain inertial element in a short time-step, as described
in Equations (12) and (13). Observing Figure 2, the particle swarm would collect
the last position very fast. It is very helpful for the swarm algorithm to converge
to the global optimum. However, it is possible for multi-modal problems involving
high dimensions to suffer from a total implosion and ultimately fitness stagnation of
the swarm. The oscillation element leads the particles to explore some new search
space, which would be discussed in the next section.

5 TWO-ORDER OSCILLATION ELEMENT

We add a time step in Equations (1a) and (1b) and obtain recurrence relation in
Equations (14a) and (14b).

vi,j(t+ 1) = ωvi,j(t) + c1r1(pi,j(t)− xi,j(t)) + c2r2(pg,j(t)− xi,j(t)) (14a)

xi,j(t+ 1) = xi,j(t) + vi,j(t+ 1) (14b)

Substituting Equation (14a) into Equation (1b), we get Equation (15).

vi,j(t+1)− (ω+1)vi,j(t) + (c1r1+ c2r2)(xi,j(t)− xi,j(t− 1))+ωvi,j(t− 1) = 0 (15)

Without loss of generality, we can analyze the swarm system by still observing
the one-dimensional model. After elimination of position variables using Equa-
tion (1b), the velocity varying process yields an equivalent, second-order difference
Equation (16).

vi,j(t+ 1) + (c1r1 + c2r2 − ω − 1)vi,j(t) + ωvi,j(t− 1) = 0 (16)
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Fig. 2. First-order inertial element curve

Substituting Equations (1b) and (14b) into Equation (14a), the position varying
process also yields an equivalent, second-order difference Equation (17).

xi(t+ 1) + (c1r1 + c2r2 − ω − 1)xi(t) + ωxi(t− 1)− c1r1pi(t)− c2r2pg(t) = 0 (17)

Let ϕ1 = c1r1, ϕ2 = c2r2 and ϕ = ϕ1+ϕ2, and reduce to a single dimension; then
the second-order difference, non-homogeneous recurrence relations are obtained:

vi(t+ 1) + (ϕ− ω − 1)vi(t) + ωvi(t− 1) = 0 (18a)

xi(t+ 1) + (ϕ− ω − 1)xi(t) + ωxi(t− 1)− ϕ1pi(t)− ϕ2pg(t) = 0 (18b)

Taking the Laplace transform of Equation (18b), we obtain Equation (19).

Xi(s) =
ϕ1sPi(s) + ϕ2sPg(s)

s2 + (ϕ1 + ϕ2 − ω − 1)s+ ω
(19)

Equation (19) can be split into two equtions:

Xi(s) =
γ2,1ϕ1sPi(s)

s2 + (ϕ1 + ϕ2 − ω − 1)s+ ω
(20)

Xi(s) =
γ2,1ϕ2sPg(s)

s2 + (ϕ1 + ϕ2 − ω − 1)s+ ω
(21)
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where γ2,1 and γ2,2 are the component constants within the interval [0, 1]. Let
τ2,1 = γ2,1ϕ1, τ2,2 = γ2,2ϕ2 and ϕ = ϕ1 + ϕ2; Equations (20) and (21) can be
rewritten as

G2,1(s) =
Xi(s)

Pi(s)
=

τ2,1s

s2 + (ϕ1 + ϕ2 − ω − 1)s+ ω
(22)

G2,2(s) =
Xi(s)

Pg(s)
=

τ2,2s

s2 + (ϕ1 + ϕ2 − ω − 1)s+ ω
(23)

i.e.,

G2,1(s) =
τ2,1s

(

s+ ϕ−ω−1
2

)2 − 4ω−(ϕ−ω−1)2

4

(24)

G2,2(s) =
τ2,2s

(

s+ ϕ−ω−1
2

)2 − 4ω−(ϕ−ω−1)2

4

(25)

Consider two cases.

1. If (ϕ− ω − 1)2 ≥ 4ω, Equation (24) can be rewritten as

G2,1(s) = τ2,1
s+ ϕ−ω−1

2
− ϕ−ω−1

2
(

s+ ϕ−ω−1
2

)2 − (ϕ−ω−1)2−4ω
4

= τ2,1
s+ ϕ−ω−1

2

(

s+ ϕ−ω−1
2

)2 −
(

√

(ϕ−ω−1)2−4ω
4

)2 (26)

− τ2,1

ϕ−ω−1√
(ϕ−ω−1)2−4ω

√

(ϕ−ω−1)2−4ω
4

(

s+ ϕ−ω−1
2

)2 −
(

√

(ϕ−ω−1)2−4ω
4

)2

Applying the inverse Laplace transform, we can find the general solution in
Equation (27).

g2,1(t) = L−1{G2,1(s)}(t)

= τ2,1e
−

ϕ−ω−1

2
t cosh

(

√

(ϕ− ω − 1)2 − 4ω

2
t

)

(27)

− τ2,1
ϕ− ω − 1

√

(ϕ− ω − 1)2 − 4ω
e−

ϕ−ω−1

2
t sinh

(

√

(ϕ− ω − 1)2 − 4ω

2
t

)
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2. If (ϕ− ω − 1)2 < 4ω, similarly Equation (25) can be rewritten as

G2,2(s) = τ2,2
s+ ϕ−ω−1

2
− ϕ−ω−1

2
(

s+ ϕ−ω−1
2

)2
+ 4ω−(ϕ−ω−1)2

4

= τ2,2
s+ ϕ−ω−1

2

(

s+ ϕ−ω−1
2

)2
+

(

√

4ω−(ϕ−ω−1)2

4

)2 (28)

− τ2,2

ϕ−ω−1√
4ω−(ϕ−ω−1)2

√

4ω−(ϕ−ω−1)2

4

(

s+ ϕ−ω−1
2

)2
+

(

√

4ω−(ϕ−ω−1)2

4

)2

Applying the inverse Laplace transform, we can find the general solution in
Equation (29).

g2,2(t) = L−1{G2,2(s)}(t)

= τ2,2e
−

ϕ−ω−1

2
t cos

(

√

4ω − (ϕ− ω − 1)2

2
t

)

(29)

− τ2,2
ϕ− ω − 1

√

4ω − (ϕ− ω − 1)2
e−

ϕ−ω−1

2
t sin

(

√

4ω − (ϕ− ω − 1)2

2
t

)

As illustrated in Equations (27) and (29), the trajectory of the particle in the
swarm model implies the oscillation element. The explicit time functions have shown
that the trajectories of the particles oscillate as different sinusoidal (sin and cos) or
hyperbolic sinusoidal (sinh and cosh) waves. Figures 3 and 4 illustrate the tendency
of the trajectories. It is to be noted that the parameters are set to be constants and
τ = 2.0 in Figures 3 and 4. The sustained oscillation can be adjusted by tuning
these parameters randomly or manually. The first-order inertial element is helpful
to maintain the trajectory’s stability and algorithm convergence, while the second-
order oscillation element trends to explore some new search spaces for the better
solutions. The tradeoff between exploration and exploitation is crucial in search
and optimization, having a great effect on global optimization performance, e.g.,
accuracy and convergence speed of optimization algorithms [50, 51, 52].

6 CONVERGENCE REGIONS

Tan et al. presented analysis of the evolutionary trajectories and the convergence
properties of PSO based on the discrete time linear system theory. They also dis-
cussed the conditions for choosing the parameters [37]. Rapaić and Kanović provided
a formal convergence analysis of the conventional PSO algorithms with time-varying
parameters [47]. Based on their analysis, the convergence-related parametric model
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Fig. 3. Two-order inertial element Curve (g2,1(t))
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for the conventional PSO was introduced. In this section, we further analyze the
convergence regions of the swarm system based on the spectral radius and Lyapunov
second theorem on stability.

The swarm system can be investigated by still observing the one-dimensional
model:

vi(t) = ωvi(t− 1) + c1r1(pi(t− 1)− xi(t− 1)) + c2r2(pg(t− 1)− xi(t− 1)) (30a)

xi(t) = xi(t− 1) + vi(t) (30b)

Equations (30a) and (30b) are rewritten as:

vi(t) = ωvi(t− 1)− ϕxi(t− 1) + ϕ1pi(t− 1) + ϕ2pg(t− 1) (31a)

xi(t) = ωvi(t− 1) + (1− ϕ)xi(t− 1) + ϕ1pi(t− 1) + ϕ2pg(t− 1) (31b)

This recurrence relation represents the system in state-space form:

[

vi(t)
xi(t)

]

=

[

ω −ϕ

ω 1− ϕ

]

·
[

vi(t− 1)
xi(t− 1)

]

+

[

ϕ1 ϕ2

ϕ1 ϕ2

]

·
[

pi(t− 1)
pg(t− 1)

]

Let ~y(t) =

[

vi(t)
xi(t)

]

, ~p(t) =

[

pi(t)
pg(t)

]

, G =

[

w −ϕ

w 1− ϕ

]

and B =

[

ϕ1 ϕ2

ϕ1 ϕ2

]

,

then we have its discrete time varying system written in compact matrix form as
follows:

~y(t) = G · ~y(t− 1) + B · ~p(t− 1). (32)

When ω and ϕ are constants, the system converges if and only if ρ(G) < 1 where
ρ(G) represents the spectral radius of matrix G. Also, the rate of its convergence
depends on ρ(G) for the iterative process determined by Equation (32). Therefore,
the spectral radius of the iteration matrix plays an important role in the comparison
of the speed of convergence of different iterative process of the same system. The
characteristic polynomial of the matrix G is expressed as

λ2 + (ϕ− 1− ω)λ+ ω (33)

where the scalar λ is an eigenvalue of G.

Lemma 1 (Necessary and Sufficient Condition of Convergence). When ω and ϕ

are constants, the system converges if and only if 0 < ϕ < 2ω + 2 and ω < 1
are satisfied together, and the convergence rate is determined by ρ(G).

Proof. When ω and ϕ are the constants, we can obtain its eigenvalues of the
iteration matrix G in Equation (33). The eigenvalues are

λ1,2 =











1+ω−ϕ±
√

(ϕ−ω−1)2−4ω

2
if (ϕ− ω − 1)2 ≥ 4ω

1+ω−ϕ±i
√

4ω−(ϕ−ω−1)2

2
if (ϕ− ω − 1)2 < 4ω.

(34)
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The spectral radius ρ(G) of matrix G is determined by the eigenvalues.

ρ(G) = max
1≤i≤2

‖λi‖ = max{‖λ1‖, ‖λ2‖} (35)

where if λ is real number, ‖λ‖ denotes its absolute value, and ‖λ‖ denotes its norm if
λ is complex number. Linear asynchronous iterations state that convergence occurs
if and only if the spectral radius of the modulus matrix is less than 1. So the system
converges if and only if ρ(G) < 1 [53, 54].

Consider two cases.

1. If (ϕ− ω − 1)2 ≥ 4ω, λ1 and λ2 are real numbers.

−2 < 1 + ω − ϕ+
√

(ϕ− ω − 1)2 − 4ω < 2 (36a)

−2 < 1 + ω − ϕ−
√

(ϕ− ω − 1)2 − 4ω < 2 (36b)

i.e.
1 + ω − ϕ+

√

(ϕ− ω − 1)2 − 4ω < 2 (37a)

−2 < 1 + ω − ϕ−
√

(ϕ− ω − 1)2 − 4ω. (37b)

We can obtain Equation (38a) from Equation (37a), and Equation (38b) from
Equation (37b).

ϕ < 2ω + 2 (38a)

0 < ϕ (38b)

We make Equation (38a), Equation (38b) and the precondition ((ϕ− ω− 1)2 ≥
4ω) together. If ω > 0, we have the following equations:

0 < ϕ ≤ 1 + ω − 2
√
ω (39)

or
1 + ω + 2

√
ω ≤ ϕ < 2ω + 2. (40)

If ω < 0, we get Equation (41).

0 < ϕ < 2ω + 2. (41)

2. If (ϕ− ω − 1)2 < 4ω, λ1 and λ2 are complex numbers.

‖λ1,2‖ =

√

(ω + 1− ϕ)2

4
+

4ω − (ϕ− ω − 1)2

4
=

√
ω. (42)

We make Equation (42) and the precondition ((ϕ− ω − 1)2 < 4ω) together. It
is concluded that:

ω + 1− 2
√
ω < ϕ < ω + 1 + 2

√
ω (43)
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and
0 ≤ ω < 1. (44)

Synthesize case (1) and case (2); it is concluded that:

{

0 < ϕ < 2ω + 2

ω < 1.
(45)

✷

Figure 5 illustrates the convergent range, in which A1, A2 and A3 are determined
by the real eigenvalues, A4 is determined by the complex eigenvalues. The spectral
radius increases from 0 to 1 as shown in Figures 6 and 7, and its contours are
illustrated in Figure 8. The less the spectral radius is, the faster convergence rate
the swarm system has.
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Fig. 5. Convergence regions

When ω and ϕ are also discrete time functions but not the constants, then we
have the discrete time varying system:

~y(t) = G(t) · ~y(t− 1) + B(t) · ~p(t− 1). (46)

Lemma 2 ((Lyapunov’s Second Theorem on Stability) [55]). Let ζ(t) = 0 be an
equilibrium point of a nonlinear system. The equilibrium point is globally asymp-
totically stable (stability in the large) if there is a nonnegative scalar function V (ζ(t))
which satisfies:
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Fig. 6. Spectral radius in (0, 70)◦ view

Fig. 7. Spectral radius in (0, 90)◦ view
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1.
V (0) = 0 and V (ζ(t)) > 0 ∀ζ(t) 6= 0 (Positive Definite) (47)

2.
∆V (ζ(t)) = V (ζ(t+ 1))− V (ζ(t)) < 0 (Negative Definite) (48)

3.
‖ζ(t)‖ → 0 ⇒ V (ζ(t)) → ∞. (49)

The Lyapunov’s second theorem on stability allows determining how far from
the equilibrium point the trajectory can be and still converge to it as t approaches
∞ [56, 57, 58].

Lemma 3 (Sufficient Condition of Convergence). When ω and ϕ are the discrete
time functions, the discrete time varying system converges if 0 < ϕ < 2ω + 2 and
ω < 1 are satisfied together.

Proof. The “obvious” nonnegative scalar function to use in this context is the norm

of the vector, i.e. let ~y(t) =

[

vi(t)
xi(t)

]

, and V (~y(t)) = ‖~y(t)‖.

1. It is obvious that V (~y(t)) ≥ 0, i.e. V (~y(t)) positive definite.

2.
∆V (~y(t)) = V (~y(t+ 1))− V (~y(t))

= ‖~y(t+ 1)‖ − ‖~y(t)‖
≤ ‖G(t)‖‖~y(t+ 1)‖ − ‖~y(t)‖
= (‖G(t)‖ − 1)‖~y(t)‖

(50)
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Only if ‖G(t)‖ < 1, ∆V (~y(t)) is negative definite. It means the norm of the
eigenvalues of matrix G must be less than 1, i.e. ω and ϕ must satisfy the
conditions in Equation (45).

3.

‖~y(t)‖ → 0 ⇒ V (~y(t)) → ∞ (51)

Synthesize cases (1), (2) and (3); the lemma is proved up. ✷

Lemma 3 usually applied to the particle dynamics in determining sufficient con-
ditions for asymptotic stability and, hence, convergence to the equilibrium point.

7 CONCLUSIONS

In this paper, we focused on the dynamic trajectory and convergence of swarm
algorithm based on discrete time varying theory and probabilistic theory. We ex-
plored the tradeoff between exploration and exploitation using differential analysis
and Laplace transform. The trajectories are parsed into first-order inertial element
and second-order oscillation element. Their transfer functions are derived, and the
trajectories are described in explicit time functions. The first-order inertial element
is helpful to maintain the trajectory’s stability and algorithm convergence, while the
second-order oscillation element trends to explore some new search spaces for the
better solutions. The convergence regions of the swarm system were analyzed using
the dynamical system theory. We provided the necessary and sufficient conditions
of the convergence. And the convergence regions were also illustrated.
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[22] Garćıa-Villoria, A.—Pastor, R.: Introducing Dynamic Diversity into a Discrete
Particle Swarm Optimization. Computers and Operations Research, Vol. 36, 2009,
No. 3, pp. 951–966.

[23] Zielinski, K.—Weitkemper, P.—Laur, R.—Kammeyer, K.D.: Optimization
of Power Allocation for Interference Cancellation With Particle Swarm Optimization.
IEEE Transactions on Evolutionary Computation, Vol. 13, 2009, No. 1, pp. 128–150.

[24] Deep, K.—Bansal, J. C.: Mean Particle Swarm Optimisation for Function Opti-
misation. International Journal of Computational Intelligence Studies, Vol. 1, 2009,
No. 1, pp. 72–92.

[25] Coelho, L.D. S.: Gaussian Quantum-Behaved Particle Swarm Optimization Ap-
proaches for Constrained Engineering Design Problems. Expert Systems with Appli-
cations, Vol. 37, 2010, No. 2, pp. 1676–1683.

[26] Babaoglu, I.—Findik, O.—Ilker, E.: A Comparison of Feature Selection Models
Utilizing Binary Particle Swarm Optimization and Genetic Algorithm in Determin-
ing Coronary Artery Disease Using Support Vector Machine. Expert Systems with
Applications, Vol. 37, 2010, No. 4, pp. 3177–3183.

[27] Zhao, X.: A Perturbed Particle Swarm Algorithm for Numerical Optimization. Ap-
plied Soft Computing, Vol. 10, 2010, No. 1, pp. 119–124.

[28] Bishop, M.—Nasuto, S.: Exploration Vs. Exploitation in Naturally Inspired
Search. Proceedings of Adaptation in Artificial and Biological Systems, 2006.
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