On the Satisfiability of Quasi-Classical Description Logics
Keywords:
Semantic web, description logics, quasi-classical logic, satisfiability, tableauxAbstract
Though quasi-classical description logic (QCDL) can tolerate the inconsistency of description logic in reasoning, a knowledge base in QCDL possibly has no model. In this paper, we investigate the satisfiability of QCDL, namely, QC-coherency and QC-consistency and develop a tableau calculus, as a formal proof, to determine whether a knowledge base in QCDL is QC-consistent. To do so, we repair the standard tableau for DL by introducing several new expansion rules and defining a new closeness condition. Finally, we prove that this calculus is sound and complete. Based on this calculus, we implement an OWL paraconsistent reasoner called QC-OWL. Preliminary experiments show that QC-OWL is highly efficient in checking QC-consistency.Downloads
Download data is not yet available.
Downloads
Published
2018-02-09
How to Cite
Zhang, X., Feng, Z., Wu, W., Hossain, M., & MacCaull, W. (2018). On the Satisfiability of Quasi-Classical Description Logics. Computing and Informatics, 36(6), 1415–1446. Retrieved from http://147.213.75.17/ojs/index.php/cai/article/view/2017_6_1415
Issue
Section
Articles