Probabilistic Memory Model for Visual Images Categorization

Authors

  • Linxia Xiao College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
  • Yanjiang Wang College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
  • Baodi Liu College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
  • Weifeng Liu College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China

DOI:

https://doi.org/10.31577/cai_2020_6_1229

Keywords:

Memory model, image categorization, probability distribution, probabilistic inference, Bayesian decision

Abstract

During the past decades, numerous memory models have been proposed, which focused mainly on how spoken words are studied, whereas models on how visual images are studied are still limited. In this study, we propose a probabilistic memory model (PMM) for visual images categorization which is able to mimic the workings of the human brain during the image storage and retrieval. First, in the learning phase, the visual images are represented by the feature vectors extracted with convolutional neural network (CNN) and each feature component is assumed to conform to a Gaussian distribution and may be incompletely copied with a certain probability or randomly produced in accordance to an exponential distribution. Then, in the test phase, the likelihood ratio between the test image and each studied image is calculated based on the probabilistic inference theory, and an odd value in favor of an old item over a new one is obtained based on all likelihood values. Finally, if the odd value is above a certain threshold, the Bayesian decision rule is applied for image classification. Experimental results on two benchmark image datasets demonstrate that the proposed PMM can perform well on categorization tasks for both studied and non-studied images.

Downloads

Download data is not yet available.

Downloads

Published

2021-05-20

How to Cite

Xiao, L., Wang, Y., Liu, B., & Liu, W. (2021). Probabilistic Memory Model for Visual Images Categorization. Computing and Informatics, 39(6), 1229–1249. https://doi.org/10.31577/cai_2020_6_1229