Internet of Thing Based Confidential Healthcare Data Storage, Access Control and Monitoring Using Blockchain Technique
DOI:
https://doi.org/10.31577/cai_2022_5_1207Keywords:
Internet of things, secure data storage, access control, access monitoring, blockchain, smart contract, attribute based encryption, e-healthcare, data pruningAbstract
Internet of Things plays a significant role in multiple sectors like agriculture, manufacturing and healthcare for collecting information to automation. The collected information is in different diversity and consists of confidential and non-confidential information. Secure handling of confidential data is a crucial task in cloud computing like storage, access control and monitoring. The blockchain based storage technique provides immutable data storage, efficient access control and dynamic monitoring to confidential data. Thus, the secure internet of things data storage, access control and monitoring using blockchain technique is proposed in this work. The patients health information that are in different formats are pruned by a decision tree algorithm and it classifies the confidential data and non-confidential data by the fuzzy rule classification technique. Depending on data owner's willing, the fuzzy rule is framed and the confidential and non-confidential data collected by internet of things sensors are classified. To provide confidentiality to confidential data, Attribute Based Encryption is applied to confidential data and stored in an off-chain mode of blockchain instead of entire data encryption and storage. The non-confidential data is stored in a plaintext form in cloud storage. When compared to support vector machine, K-nearest neighbor and Naive Bayes classification techniques, the proposed fuzzy rule based confidential data identification produces greater than 96 % of accuracy based on data owner willing and confidential data storage takes lesser than 20 % of storage space and processing time in an entire data storage. Additionally, the blockchain performances like throughput, network scalability and latency is optimized through minimal block size and transactions. Thus, our experimental results show that the proposed blockchain based internet of things data storage, access control and monitoring technique provides better confidentiality and access control to confidential data than the conventional cloud storage technique with lesser processing time.