Image Segmentation by Fuzzy C-Means Clustering Algorithm with a Novel Penalty Term
Keywords:
Fuzzy c-means, clustering, image segmentation, expectation maximizationAbstract
To overcome the noise sensitiveness of conventional fuzzy c-means (FCM) clustering algorithm, a novel extended FCM algorithm for image segmentation is presented in this paper. The algorithm is developed by modifying the objective function of the standard FCM algorithm with a penalty term that takes into account the influence of the neighboring pixels on the centre pixels. The penalty term acts as a regularizer in this algorithm, which is inspired from the neighborhood expectation maximization algorithm and is modified in order to satisfy the criterion of the FCM algorithm. The performance of our algorithm is discussed and compared to those of many derivatives of FCM algorithm. Experimental results on segmentation of synthetic and real images demonstrate that the proposed algorithm is effective and robust.Downloads
Download data is not yet available.
Downloads
Published
2012-01-27
How to Cite
Yang, Y., & Huang, S. (2012). Image Segmentation by Fuzzy C-Means Clustering Algorithm with a Novel Penalty Term. Computing and Informatics, 26(1), 17–31. Retrieved from http://147.213.75.17/ojs/index.php/cai/article/view/296
Issue
Section
Articles