Evaluation Measures for Text Summarization
Abstract
We explain the ideas of automatic text summarization approaches and the taxonomy of summary evaluation methods. Moreover, we propose a new evaluation measure for assessing the quality of a summary. The core of the measure is covered by Latent Semantic Analysis (LSA) which can capture the main topics of a document. The summarization systems are ranked according to the similarity of the main topics of their summaries and their reference documents. Results show a high correlation between human rankings and the LSA-based evaluation measure. The measure is designed to compare a summary with its full text. It can compare a summary with a human written abstract as well; however, in this case using a standard ROUGE measure gives more precise results. Nevertheless, if abstracts are not available for a given corpus, using the LSA-based measure is an appropriate choice.