Optimizing Security and Performance in Blockchain-Enhanced Federated Learning Through Participant Selection with Role Determination
Keywords:
Federated learning, participant selection, blockchain, malicious attacks, distributed systemsAbstract
Federated learning (FL) allows distributed devices to jointly train a global model while safeguarding the privacy of their local data. However, selecting and securing clients, especially in environments with potentially malicious participants, remains a critical challenge. This study proposes an innovative participant selection method to enhance both security and efficiency in centralized and decentralized FL frameworks. In the centralized framework, this method effectively excludes clients with weak privacy protections and optimization capabilities, thus increasing overall system security. For decentralized FL, a blockchain-supported approach is introduced, which further strengthens the robustness of the system. Using a dynamic role assignment algorithm, roles such as worker, validator, and miner are allocated based on security and performance metrics for each training round. The findings show that this method performs on a par with the scenarios free of malicious clients, demonstrating the value of blockchain technology in improving FL protocols. By addressing security vulnerabilities and improving training efficiency, this research contributes to the development of more secure and efficient FL systems, underscoring the importance of advanced participant selection and role assignment strategies.